↓ Skip to main content

Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: implications for CSF homeostasis

Overview of attention for article published in Fluids and Barriers of the CNS, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
82 Dimensions

Readers on

mendeley
117 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: implications for CSF homeostasis
Published in
Fluids and Barriers of the CNS, May 2018
DOI 10.1186/s12987-018-0102-9
Pubmed ID
Authors

Edward G. Stopa, Keith Q. Tanis, Miles C. Miller, Elena V. Nikonova, Alexei A. Podtelezhnikov, Eva M. Finney, David J. Stone, Luiz M. Camargo, Lisan Parker, Ajay Verma, Andrew Baird, John E. Donahue, Tara Torabi, Brian P. Eliceiri, Gerald D. Silverberg, Conrad E. Johanson

Abstract

In Alzheimer's disease, there are striking changes in CSF composition that relate to altered choroid plexus (CP) function. Studying CP tissue gene expression at the blood-cerebrospinal fluid barrier could provide further insight into the epithelial and stromal responses to neurodegenerative disease states. Transcriptome-wide Affymetrix microarrays were used to determine disease-related changes in gene expression in human CP. RNA from post-mortem samples of the entire lateral ventricular choroid plexus was extracted from 6 healthy controls (Ctrl), 7 patients with advanced (Braak and Braak stage III-VI) Alzheimer's disease (AD), 4 with frontotemporal dementia (FTD) and 3 with Huntington's disease (HuD). Statistics and agglomerative clustering were accomplished with MathWorks, MatLab; and gene set annotations by comparing input sets to GeneGo ( http://www.genego.com ) and Ingenuity ( http://www.ingenuity.com ) pathway sets. Bonferroni-corrected hypergeometric p-values of < 0.1 were considered a significant overlap between sets. Pronounced differences in gene expression occurred in CP of advanced AD patients vs. Ctrls. Metabolic and immune-related pathways including acute phase response, cytokine, cell adhesion, interferons, and JAK-STAT as well as mTOR were significantly enriched among the genes upregulated. Methionine degradation, claudin-5 and protein translation genes were downregulated. Many gene expression changes in AD patients were observed in FTD and HuD (e.g., claudin-5, tight junction downregulation), but there were significant differences between the disease groups. In AD and HuD (but not FTD), several neuroimmune-modulating interferons were significantly enriched (e.g., in AD: IFI-TM1, IFN-AR1, IFN-AR2, and IFN-GR2). AD-associated expression changes, but not those in HuD and FTD, were enriched for upregulation of VEGF signaling and immune response proteins, e.g., interleukins. HuD and FTD patients distinctively displayed upregulated cadherin-mediated adhesion. Our transcript data for human CP tissue provides genomic and mechanistic insight for differential expression in AD vs. FTD vs. HuD for stromal as well as epithelial components. These choroidal transcriptome characterizations elucidate immune activation, tissue functional resiliency, and CSF metabolic homeostasis. The BCSFB undergoes harmful, but also important functional and adaptive changes in neurodegenerative diseases; accordingly, the enriched JAK-STAT and mTOR pathways, respectively, likely help the CP in adaptive transcription and epithelial repair and/or replacement when harmed by neurodegeneration pathophysiology. We anticipate that these precise CP translational data will facilitate pharmacologic/transgenic therapies to alleviate dementia.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 117 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 117 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 18%
Student > Bachelor 15 13%
Student > Master 13 11%
Unspecified 11 9%
Researcher 10 9%
Other 20 17%
Unknown 27 23%
Readers by discipline Count As %
Neuroscience 22 19%
Biochemistry, Genetics and Molecular Biology 15 13%
Unspecified 11 9%
Medicine and Dentistry 11 9%
Agricultural and Biological Sciences 9 8%
Other 17 15%
Unknown 32 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 June 2018.
All research outputs
#3,283,696
of 23,088,369 outputs
Outputs from Fluids and Barriers of the CNS
#67
of 372 outputs
Outputs of similar age
#68,119
of 331,179 outputs
Outputs of similar age from Fluids and Barriers of the CNS
#2
of 7 outputs
Altmetric has tracked 23,088,369 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 372 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.2. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,179 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than 5 of them.