↓ Skip to main content

Biodegradation of caffeine by whole cells of tea-derived fungi Aspergillus sydowii, Aspergillus niger and optimization for caffeine degradation

Overview of attention for article published in BMC Microbiology, June 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biodegradation of caffeine by whole cells of tea-derived fungi Aspergillus sydowii, Aspergillus niger and optimization for caffeine degradation
Published in
BMC Microbiology, June 2018
DOI 10.1186/s12866-018-1194-8
Pubmed ID
Authors

Binxing Zhou, Cunqiang Ma, Hongzhen Wang, Tao Xia

Abstract

Pu-erh tea is a traditional Chinese tea and produced by natural solid-state fermentation. Several studies show that the natural microbiota influence caffeine level in pu-erh tea. Our previous research also found that the caffeine declined significantly (p < 0.05) in the fermentation, which suggested that the caffeine level could be influenced by specific strains. The purpose of this study was to isolate and identify microorganisms for caffeine degradation, and this research explored the degradation products from caffeine and optimal condition for caffeine degradation. 11 Fungi were isolated from pu-erh tea fermentation and 7 strains could survive in caffeine solid medium. Two superior strains were identified as Aspergillus niger NCBT110A and Aspergillus sydowii NRRL250 by molecular identification. In the substrate tests with caffeine, A. niger NCBT110A could use caffeine as a potential carbon source while glucose is absent, A. sydowii NRRL250 could degrade 600 mg/L caffeine completely in a liquid medium. During the degradation product analysis of A. sydowii NRRL250, theophylline and 3-methlxanthine were detected, and the level of theophylline and 3-methlxanthine increased significantly (p < 0.05) with the degradation of caffeine. The single factor analysis showed that the optimum conditions of caffeine degradation were 1) substrate concentration of 1200 mg/L, 2) reaction temperature at 30 °C, and 3) pH of 6. In the submerged fermentation of tea infusion by A. sydowii NRRL250, 985.1 mg/L of caffeine was degraded, and 501.2 mg/L of theophylline was produced. Results from this research indicate that Aspergillus sydowii NRRL250 was an effective strain to degrade caffeine. And theophylline and 3-methlxanthine were the main caffeine degradation products.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 9 17%
Student > Ph. D. Student 8 15%
Student > Doctoral Student 3 6%
Researcher 3 6%
Student > Master 3 6%
Other 6 12%
Unknown 20 38%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 15%
Agricultural and Biological Sciences 7 13%
Environmental Science 3 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Immunology and Microbiology 2 4%
Other 7 13%
Unknown 23 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 June 2018.
All research outputs
#20,520,426
of 23,088,369 outputs
Outputs from BMC Microbiology
#2,709
of 3,216 outputs
Outputs of similar age
#289,334
of 329,782 outputs
Outputs of similar age from BMC Microbiology
#30
of 37 outputs
Altmetric has tracked 23,088,369 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,216 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,782 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.