↓ Skip to main content

Prediction of problematic complexes from PPI networks: sparse, embedded, and small complexes

Overview of attention for article published in Biology Direct, August 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prediction of problematic complexes from PPI networks: sparse, embedded, and small complexes
Published in
Biology Direct, August 2015
DOI 10.1186/s13062-015-0067-4
Pubmed ID
Authors

Chern Han Yong, Limsoon Wong

Abstract

The prediction of protein complexes from high-throughput protein-protein interaction (PPI) data remains an important challenge in bioinformatics. Three groups of complexes have been identified as problematic to discover. First, many complexes are sparsely connected in the PPI network, and do not form dense clusters that can be derived by clustering algorithms. Second, many complexes are embedded within highly-connected regions of the PPI network, which makes it difficult to accurately delimit their boundaries. Third, many complexes are small (composed of two or three distinct proteins), so that traditional topological markers such as density are ineffective. We have previously proposed three approaches to address these challenges. First, Supervised Weighting of Composite Networks (SWC) integrates diverse data sources with supervised weighting, and successfully fills in missing co-complex edges in sparse complexes to allow them to be predicted. Second, network decomposition (DECOMP) splits the PPI network into spatially- and temporally-coherent subnetworks, allowing complexes embedded within highly-connected regions to be more clearly demarcated. Finally, Size-Specific Supervised Weighting (SSS) integrates diverse data sources with supervised learning to weight edges in a size-specific manner-of being in a small complex versus a large complex-and improves the prediction of small complexes. Here we integrate these three approaches into a single system. We test the integrated approach on the prediction of yeast and human complexes, and show that it outperforms SWC, DECOMP, or SSS when run individually, achieving the highest precision and recall levels. Three groups of protein complexes remain challenging to predict from PPI data: sparse complexes, embedded complexes, and small complexes. Our previous approaches have addressed each of these challenges individually, through data integration, PPI-network decomposition, and supervised learning. Here we integrate these approaches into a single complex-discovery system, which improves the prediction of all three types of challenging complexes. With our approach, protein complexes can be more accurately and comprehensively predicted, allowing a clearer elucidation of the modular machinery of the cell. This article was reviewed by Prof. Masanori Arita and Dr. Yang Liu (nominated by Prof. Charles DeLisi).

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Australia 1 7%
Unknown 13 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 29%
Researcher 3 21%
Other 2 14%
Student > Bachelor 1 7%
Unspecified 1 7%
Other 0 0%
Unknown 3 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 29%
Biochemistry, Genetics and Molecular Biology 2 14%
Computer Science 2 14%
Unspecified 1 7%
Engineering 1 7%
Other 0 0%
Unknown 4 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 August 2015.
All research outputs
#20,284,384
of 22,818,766 outputs
Outputs from Biology Direct
#450
of 487 outputs
Outputs of similar age
#220,858
of 264,249 outputs
Outputs of similar age from Biology Direct
#9
of 11 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 487 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,249 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.