↓ Skip to main content

MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM

Overview of attention for article published in Journal of Translational Medicine, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM
Published in
Journal of Translational Medicine, June 2018
DOI 10.1186/s12967-018-1534-3
Pubmed ID
Authors

Mengmeng Li, Xiao Chen, Liang Chen, Kai Chen, Jianye Zhou, Jiangping Song

Abstract

MicroRNAs (miRNAs) are non-coding RNAs that function as regulators of gene expression and thereby contribute to the complex disease phenotypes. Hypertrophic cardiomyopathy (HCM) and Dilated cardiomyopathy (DCM) can cause sudden cardiac death and eventually develop into heart failure. However, they have different clinical and pathophysiological phenotype and the expressional spectrum of miRNAs in left ventricles of HCM and DCM has never been compared before. This study selected 30 human left ventricular heart samples belonged to three diagnostic groups (Control, HCM, DCM). Each group has ten samples. Based on previous findings, the expression of 13 different microRNAs involving heart failure and hypertrophy (miR-1-3p, miR-10b, miR-21, miR-23a, miR-27a, miR-29a, miR-133a-3p, miR-142-3p, miR-155, miR-199a-3p, miR-199a-5p, miR-214, miR-497) was measured. 17 HCM patients were included as second group to validate the associations. We found miR-155, miR-10b and miR-23a were highly expressed in both HCM and DCM compared with control. MiR-214 was downregulated and miR-21 was upregulated in DCM but not in HCM. We also identified miR-1-3p and miR-27a expressed significantly different between HCM and DCM and both miRNAs downregulated in HCM. And only miR-1-3p correlated with left ventricular end diastolic diameter (LVEDD) and left ventricular ejection fraction (LVEF) that reflected the cardiac function in HCM. A second HCM group also confirmed this correlation. We then predicted Chloride voltage-gated channel 3 (Clcn3) as a direct target gene of miR-1-3p using bioinformatics tools and confirmed it by Luciferase reporter assay. Our data demonstrated that different cardiomyopathies had unique miRNA expression pattern. And the expression levels of miR-1-3p and miR-27a had disease-specificity and sensitivity in HCM, whereas only miR-1-3p was significantly associated with left ventricular function in HCM identifying it as a potential target to improve the cardiac function in end-stage HCM. We also provide Clcn3 as a direct target of miR-1-3p which sheds light on the mechanism of HCM.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 65 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 17 26%
Student > Ph. D. Student 10 15%
Student > Bachelor 7 11%
Student > Master 4 6%
Student > Doctoral Student 3 5%
Other 7 11%
Unknown 17 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 23 35%
Medicine and Dentistry 12 18%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Social Sciences 2 3%
Immunology and Microbiology 2 3%
Other 3 5%
Unknown 21 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 June 2018.
All research outputs
#18,801,532
of 23,301,510 outputs
Outputs from Journal of Translational Medicine
#3,032
of 4,111 outputs
Outputs of similar age
#254,847
of 329,520 outputs
Outputs of similar age from Journal of Translational Medicine
#52
of 100 outputs
Altmetric has tracked 23,301,510 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,111 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 17th percentile – i.e., 17% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,520 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 100 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.