↓ Skip to main content

Expression of Hox, Cdx, and Six3/6 genes in the hoplonemertean Pantinonemertes californiensis offers insight into the evolution of maximally indirect development in the phylum Nemertea

Overview of attention for article published in EvoDevo, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Expression of Hox, Cdx, and Six3/6 genes in the hoplonemertean Pantinonemertes californiensis offers insight into the evolution of maximally indirect development in the phylum Nemertea
Published in
EvoDevo, August 2015
DOI 10.1186/s13227-015-0021-7
Pubmed ID
Authors

Laurel S Hiebert, Svetlana A Maslakova

Abstract

Maximally indirect development via a pilidium larva is unique to the pilidiophoran clade of phylum Nemertea. All other nemerteans have more or less direct development. The origin of pilidial development with disjunct invaginated juvenile rudiments and catastrophic metamorphosis remains poorly understood. While basal members of the phylum, the Palaeonemertea, do not appear to have ever had a pilidium, certain similarity exists in the development of the Pilidiophora and the sister clade, the Hoplonemertea. It is unclear whether this similarity represents the homology and whether pilidial development evolved before or after pilidiophorans diverged from hoplonemerteans. To gain insight into these questions, we examined the expression of Hox, Cdx, and Six3/6 genes in the development of the hoplonemertean Pantinonemertes californiensis and expression of Six3/6 in the pilidium of Micrura alaskensis. To further characterize the function of larval structures showing expression of these genes, we examined the serotonergic nervous system and cell proliferation in P. californiensis. We show that Hox and Cdx genes, which pattern the pilidial imaginal discs giving rise to the juvenile trunk, are expressed in paired posterior epidermal invaginations in P. californiensis larvae. We also show that Six3/6 patterns both the pilidial cephalic discs, which give rise to the juvenile head, and a pair of anterior epidermal invaginations in hoplonemertean development. We show that anterior invaginations in larval P. californiensis are associated with a pair of serotonergic neurons, and thus may have a role in the development of the juvenile nervous system. This is similar to the role of cephalic discs in pilidiophoran development. Finally, we show that four zones of high cell proliferation correspond to the paired invaginations in P. californiensis, suggesting that these invaginations may play a similar role in the development of the hoplonemertean juvenile to the role of imaginal discs in the pilidium, which also exhibit high rates of cell proliferation. Expression of Hox, Cdx, and Six3/6 genes supports the homology between the imaginal discs of the pilidium and the paired larval invaginations in hoplonemerteans. This suggests that invaginated juvenile rudiments (possible precursors to pilidial imaginal discs) may have been present in the most recent common ancestor of the Pilidiophora and Hoplonemertea.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 4%
Unknown 25 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 27%
Student > Bachelor 3 12%
Student > Ph. D. Student 3 12%
Student > Master 3 12%
Other 2 8%
Other 4 15%
Unknown 4 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 42%
Biochemistry, Genetics and Molecular Biology 4 15%
Environmental Science 1 4%
Earth and Planetary Sciences 1 4%
Engineering 1 4%
Other 0 0%
Unknown 8 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 October 2015.
All research outputs
#14,232,642
of 22,818,766 outputs
Outputs from EvoDevo
#241
of 319 outputs
Outputs of similar age
#136,074
of 264,223 outputs
Outputs of similar age from EvoDevo
#4
of 4 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 319 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.4. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,223 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.