↓ Skip to main content

A spatial analysis of heat stress related emergency room visits in rural Southern Ontario during heat waves

Overview of attention for article published in BMC Emergency Medicine, August 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
102 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A spatial analysis of heat stress related emergency room visits in rural Southern Ontario during heat waves
Published in
BMC Emergency Medicine, August 2015
DOI 10.1186/s12873-015-0043-4
Pubmed ID
Authors

Katherine E. Bishop-Williams, Olaf Berke, David L. Pearl, David F. Kelton

Abstract

In Southern Ontario, climate change may have given rise to an increasing occurrence of heat waves since the year 2000, which can cause heat stress to the general public, and potentially have detrimental health consequences. Heat waves are defined as three consecutive days with temperatures of 32 °C and above. Heat stress is the level of discomfort. A variety of heat stress indices have been proposed to measure heat stress (e.g., the heat stress index (HSI)), and has been shown to predict increases in morbidity and/or mortality rates in humans and other species. Maps visualizing the distribution of heat stress can provide information about related health risks and insight for control strategies. Information to inform heat wave preparedness models in Ontario was previously only available for major metropolitan areas. Hospitals in communities of fewer than 100,000 individuals were recruited for a pilot study by telephone. The number of people visiting the emergency room or 24-hour urgent care service was collected for a total of 27 days, covering three heat waves and six 3-day control periods from 2010-2012. The heat stress index was spatially predicted using data from 37 weather stations across Southern Ontario by geostatistical kriging. Poisson regression modeling was applied to determine the rate of increased number of emergency room visits in rural hospitals with respect to the HSI. During a heat wave, the average rate of emergency room visits was 1.11 times higher than during a control period (IRR = 1.11, CI95% (IRR) = (1.07,1.15), p ≤ 0.001). In a univariable model, HSI was not a significant predictor of emergency room visits, but when accounting for the confounding effect of a spatial trend polynomial in the hospital location coordinates, a one unit increase in HSI predicted an increase in daily emergency rooms visits by 0.4 % (IRR = 1.004, CI95%(IRR) = (1.0005,1.007), p = 0.024) across the region. One high-risk cluster and no low risk clusters were identified in the southwestern portion of the study area by the spatial scan statistic during heat waves. The high-risk cluster is located in a region with high levels of heat stress during heat waves. This finding will aid hospitals and rural public health units in preventing and preparing for emergencies of foreseeable heat waves. Future research is needed to assess the relation between heat stress and individual characteristics and demographics of rural communities in Ontario.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 102 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 <1%
Unknown 101 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 15%
Student > Master 13 13%
Student > Bachelor 13 13%
Student > Doctoral Student 7 7%
Student > Ph. D. Student 6 6%
Other 14 14%
Unknown 34 33%
Readers by discipline Count As %
Medicine and Dentistry 15 15%
Nursing and Health Professions 9 9%
Environmental Science 9 9%
Social Sciences 9 9%
Computer Science 4 4%
Other 13 13%
Unknown 43 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 August 2020.
All research outputs
#2,218,156
of 23,577,654 outputs
Outputs from BMC Emergency Medicine
#77
of 781 outputs
Outputs of similar age
#29,631
of 265,360 outputs
Outputs of similar age from BMC Emergency Medicine
#1
of 12 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 781 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,360 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.