↓ Skip to main content

Justified granulation aided noninvasive liver fibrosis classification system

Overview of attention for article published in BMC Medical Informatics and Decision Making, August 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Justified granulation aided noninvasive liver fibrosis classification system
Published in
BMC Medical Informatics and Decision Making, August 2015
DOI 10.1186/s12911-015-0181-3
Pubmed ID
Authors

Marcin Bernas, Tomasz Orczyk, Joanna Musialik, Marek Hartleb, Barbara Błońska-Fajfrowska

Abstract

According to the World Health Organization 130-150 million (according to WHO) of people globally are chronically infected with hepatitis C virus. The virus is responsible for chronic hepatitis that ultimately may cause liver cirrhosis and death. The disease is progressive, however antiviral treatment may slow down or stop its development. Therefore, it is important to estimate the severity of liver fibrosis for diagnostic, therapeutic and prognostic purposes. Liver biopsy provides a high accuracy diagnosis, however it is painful and invasive procedure. Recently, we witness an outburst of non-invasive tests (biological and physical ones) aiming to define severity of liver fibrosis, but commonly used FibroTest®, according to an independent research, in some cases may have accuracy lower than 50 %. In this paper a data mining and classification technique is proposed to determine the stage of liver fibrosis using easily accessible laboratory data. Research was carried out on archival records of routine laboratory blood tests (morphology, coagulation, biochemistry, protein electrophoresis) and histopathology records of liver biopsy as a reference value. As a result, the granular model was proposed, that contains a series of intervals representing influence of separate blood attributes on liver fibrosis stage. The model determines final diagnosis for a patient using aggregation method and voting procedure. The proposed solution is robust to missing or corrupted data. The results were obtained on data from 290 patients with hepatitis C virus collected over 6 years. The model has been validated using training and test data. The overall accuracy of the solution is equal to 67.9 %. The intermediate liver fibrosis stages are hard to distinguish, due to effectiveness of biopsy itself. Additionally, the method was verified against dataset obtained from 365 patients with liver disease of various etiologies. The model proved to be robust to new data. What is worth mentioning, the error rate in misclassification of the first stage and the last stage is below 6.5 % for all analyzed datasets. The proposed system supports the physician and defines the stage of liver fibrosis in chronic hepatitis C. The biggest advantage of the solution is a human-centric approach using intervals, which can be verified by a specialist, before giving the final decision. Moreover, it is robust to missing data. The system can be used as a powerful support tool for diagnosis in real treatment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 9%
Unknown 20 91%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 36%
Student > Master 3 14%
Student > Bachelor 3 14%
Student > Doctoral Student 2 9%
Librarian 1 5%
Other 1 5%
Unknown 4 18%
Readers by discipline Count As %
Medicine and Dentistry 4 18%
Nursing and Health Professions 3 14%
Psychology 2 9%
Business, Management and Accounting 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Other 3 14%
Unknown 8 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 August 2015.
All research outputs
#18,422,065
of 22,821,814 outputs
Outputs from BMC Medical Informatics and Decision Making
#1,571
of 1,988 outputs
Outputs of similar age
#189,905
of 264,036 outputs
Outputs of similar age from BMC Medical Informatics and Decision Making
#27
of 34 outputs
Altmetric has tracked 22,821,814 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,988 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,036 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.