↓ Skip to main content

Form and Function of the skin glands in the Himalayan newt Tylototriton verrucosus

Overview of attention for article published in Zoological Letters, June 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Form and Function of the skin glands in the Himalayan newt Tylototriton verrucosus
Published in
Zoological Letters, June 2018
DOI 10.1186/s40851-018-0095-x
Pubmed ID
Authors

Marion Wanninger, Thomas Schwaha, Egon Heiss

Abstract

Amphibians have evolved a remarkable diversity of defensive mechanisms against predators. One of the most conspicuous components in their defense is related to their ability to produce and store a high variety of bioactive (noxious to poisonous) substances in specialized skin glands. Previous studies have shown that T. verrucosus is poisonous with the potential to truly harm or even kill would-be predators by the effect of its toxic skin secretions. However, little is known on form and function of the skin glands responsible for production and release of these secretions. By using light- and scanning electron microscopy along with confocal laser scanning microscopy, we show that T. verrucosus exhibits three different multicellular skin glands: one mucous- and two granular glands. While mucous glands are responsible for the production of the slippery mucus, granular glands are considered the production site of toxins. The first type of granular glands (GG1) is found throughout the skin, though its average size can vary between body regions. The second type of granular glands (GG2) can reach larger dimensions compared with the former type and is restricted to the tail region. Despite their different morphology, all three skin gland types are enwrapped by a distinct myoepithelial sheath that is more prominently developed in the granular (i.e. poison-) glands compared to the mucous glands. The myoepithelial sheath consists of one layer of regularly arranged slender myoepithelial cells that run from the gland pore to the basal gland pole. This study shows that the skin in the Himalayan newt T. verrucosus displays one mucus- and two poison gland types enwrapped by a myoepithelial sheath. Contraction of the myoepithelium squeezes the glands and glandular content is released upon the skin surface where the secretion can deploy its defensive potential.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 19%
Student > Master 4 19%
Student > Ph. D. Student 4 19%
Student > Doctoral Student 2 10%
Researcher 2 10%
Other 2 10%
Unknown 3 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 43%
Biochemistry, Genetics and Molecular Biology 4 19%
Environmental Science 1 5%
Nursing and Health Professions 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Other 2 10%
Unknown 3 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 June 2018.
All research outputs
#15,536,861
of 23,090,520 outputs
Outputs from Zoological Letters
#139
of 169 outputs
Outputs of similar age
#208,893
of 328,585 outputs
Outputs of similar age from Zoological Letters
#7
of 9 outputs
Altmetric has tracked 23,090,520 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 169 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.7. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,585 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.