↓ Skip to main content

One-year patency control and risk analysis of eSVS®-mesh-supported coronary saphenous vein grafts

Overview of attention for article published in Journal of Cardiothoracic Surgery, August 2015
Altmetric Badge

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
One-year patency control and risk analysis of eSVS®-mesh-supported coronary saphenous vein grafts
Published in
Journal of Cardiothoracic Surgery, August 2015
DOI 10.1186/s13019-015-0293-y
Pubmed ID
Authors

Devdas T. Inderbitzin, Jens Bremerich, Peter Matt, Martin T. R. Grapow, Friedrich S. Eckstein, Oliver Reuthebuch

Abstract

The eSVS® external venous nitinol mesh (Kips Bay Medical, Minneapolis, USA) was designed to improve long-term patency of coronary saphenous vein grafts (SVG) by preventing pressure-induced wall stress and reactive neo-intimal hyperplasia. We present one-year-patency rates of meshed SVGs assessed by coronary computed tomographic angiography (cCTA). Data from consecutive patients receiving an eSVS® meshed coronary bypass SVG from 06/2010 to 06/2011 were prospectively collected and analysed post-hoc. Patient characteristics, coronary artery disease, SVG quality, surgery (including number of anastomoses and transit time flow-measurement: TTFM), postoperative course and graft patency by cCTA were recorded. Potential risk factors for meshed graft occlusion were evaluated. 22 patients received an eSVS® mesh (18 isolated CABG, 4 combined with aortic valve replacement). Three patients died prior to the one-year follow-up and were excluded. All 19 surviving patients (mean age 70.4 ± 9.5 years, 3 female) completed a cCTA of all grafts at 12 ± 0.1 months after surgery including 21 meshed SVGs (33 distal anastomoses), 7 unmeshed SVGs (13 distal anastomoses) and 22 arterial grafts (30 distal anastomoses). Mesh application was safe with patent grafts (by intraoperative TTFM) and perioperative course uneventful in all patients. The average graft/anastomosis number per patient was 2.6 ± 0.5/3.7 ± 0.8. Patency was unrestricted in all arterial and unmeshed SVGs (cCTA). Meshed SVG patency was 85 % (n = 28/33) for distal anastomoses and 76 % (n = 16/21) among meshed SVGs. Four SVGs with single distal anastomosis to the right coronary were completely occluded. One sequential graft to the left coronary was occluded between proximal and first distal anastomosis (see Fig. 1). Patency was independent of target site, coronary run-off, SVG quality and sequential distal grafting. All patients were asymptomatic. The overall one-year patency rate of eSVS® meshed SVGs/anastomoses was 76 %/85 %. Surgical implantation is safe independently of target site, run-off, vein quality and sequential distal anastomoses. However, graft patency of meshed veins (76 %) was inferior to non-meshed (100 %) or arterial grafts (100 %). Thus our mid-term data do not sustain the concept of improving vein graft patency by external reinforcing with the eSVS® mesh. Further long-term follow-up is warranted.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 12%
Other 3 12%
Student > Doctoral Student 3 12%
Researcher 3 12%
Student > Ph. D. Student 3 12%
Other 5 19%
Unknown 6 23%
Readers by discipline Count As %
Medicine and Dentistry 11 42%
Psychology 2 8%
Nursing and Health Professions 1 4%
Unspecified 1 4%
Social Sciences 1 4%
Other 3 12%
Unknown 7 27%