↓ Skip to main content

IFNγ+ Treg in-vivo and in-vitro represent both activated nTreg and peripherally induced aTreg and remain phenotypically stable in-vitro after removal of the stimulus

Overview of attention for article published in BMC Immunology, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
IFNγ+ Treg in-vivo and in-vitro represent both activated nTreg and peripherally induced aTreg and remain phenotypically stable in-vitro after removal of the stimulus
Published in
BMC Immunology, August 2015
DOI 10.1186/s12865-015-0111-2
Pubmed ID
Authors

Volker Daniel, Karina Trojan, Martina Adamek, Gerhard Opelz

Abstract

IFNγ-producing CD4+CD25+Foxp3+CD127- Treg represent the first line of Treg during an immune response. In the present study we determined whether IFNγ+ Treg in-vivo and in-vitro are Helios-positive representing activated natural (nTreg) or Helios-negative representing adaptive Treg (aTreg) and whether they originate from CD4+CD25+ and/or CD4+CD25- PBL. Furtheron, we investigated whether they are inducible by recombinant IFNγ (rIFNγ) as a single stimulus, decrease in-vitro after elimination of the stimulus, and have a demethylated Foxp3 Treg-specific demethylated region (TSDR) which is associated with stable Foxp3 expression. Subsets of IFNγ+ Treg were determined in peripheral blood of healthy controls using eight-color flow cytometry and were further investigated in-vitro. Foxp3 TSDR methylation status was determined using bisulphite polymerase chain reaction (PCR) and high resolution melt (HRM) analysis. Nearly all Treg in the peripheral blood were Helios+IFNγ- (1.9 ± 1.1/μl) and only few were Helios+IFNγ+ or Helios-IFNγ+ Treg (both 0.1 ± 0.1/μl). Enriched IFNγ+ Treg subsets showed in part strong Foxp3 TSDR demethylation. In-vitro, rIFNγ was unable to induce Treg. CD4+CD25+ enriched PBL stimulated with PMA/Ionomycin in the presence of rIFNγ were rather resistant to the effect of rIFNγ, in contrast to CD4+CD25- enriched PBL which showed increasing total Treg with Helios+ Treg switching from IFNγ- to IFNγ+ and increasing Helios-IFNγ+ Treg. The data indicate that rIFNγ, in combination with a polyclonal stimulus, activates nTreg and induces aTreg. When phorbol 12-myristate 13-acetate (PMA)/Ionomycin was washed out from the cell culture after 6 h stimulation, Treg induction continued for at least 96 h of cell culture, contradicting the hypothesis that removal of the stimulus results in significant decrease of IFNγ- and IFNγ+ CD4+CD25+Foxp3+CD127- Treg due to loss of Foxp3 expression. IFNγ+Helios- aTreg as well as IFNγ+Helios+ nTreg are detectable in the blood of healthy individuals, show in part strong Foxp3 TSDR demethylation and are inducible in-vitro. The present data provide further insight concerning the in-vivo and in-vitro characteristics of IFNγ+ Treg and help to understand their role in immunoregulation. Alloantigen-specific demethylated IFNγ+Helios+ nTreg might represent a suitable marker for monitoring graft-specific immunosuppression in renal transplant recipients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 30%
Student > Doctoral Student 5 14%
Researcher 4 11%
Student > Bachelor 3 8%
Student > Master 2 5%
Other 4 11%
Unknown 8 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 30%
Medicine and Dentistry 6 16%
Immunology and Microbiology 5 14%
Agricultural and Biological Sciences 2 5%
Unspecified 1 3%
Other 3 8%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 January 2016.
All research outputs
#14,220,289
of 23,577,654 outputs
Outputs from BMC Immunology
#251
of 592 outputs
Outputs of similar age
#130,910
of 265,715 outputs
Outputs of similar age from BMC Immunology
#6
of 13 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 592 research outputs from this source. They receive a mean Attention Score of 3.8. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,715 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.