↓ Skip to main content

MIG-6 suppresses endometrial epithelial cell proliferation by inhibiting phospho-AKT

Overview of attention for article published in BMC Cancer, May 2018
Altmetric Badge

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MIG-6 suppresses endometrial epithelial cell proliferation by inhibiting phospho-AKT
Published in
BMC Cancer, May 2018
DOI 10.1186/s12885-018-4502-7
Pubmed ID
Authors

Jung-Yoon Yoo, Hee-Bum Kang, Russell R. Broaddus, John I. Risinger, Kyung-Chul Choi, Tae Hoon Kim

Abstract

Aberrant hyperactivation of epithelial proliferation, AKT signaling, and association with unopposed estrogen (E2) exposure is the most common endometrial cancer dysfunction. In the normal uterus, progesterone (P4) inhibits proliferation by coordinating stromal-epithelial cross-talk, which we previously showed is mediated by the function of Mitogen-inducible gene 6 (Mig-6). Despite their attractive characteristics, non-surgical conservative therapies based on progesterone alone have not been universally successful. One barrier to this success has been the lack of understanding of the P4 effect on endometrial cells. To further understand the role of Mig-6 and P4 in controlling uterine proliferation, we developed a Sprr2f-cre driven mouse model where Mig-6 is specifically ablated only in the epithelial cells of the uterus (Sprr2f cre+ Mig-6 f/f ). We examined P4 effect and regulation of AKT signaling in the endometrium of mutant mice. Sprr2f cre+ Mig-6 f/f mice developed endometrial hyperplasia. P4 treatment abated the development of endometrial hyperplasia and restored morphological and histological characteristics of the uterus. P4 treatment reduced cell proliferation which was accompanied by decreased AKT signaling and the restoration of stromal PGR and ESR1 expression. Furthermore, our in vitro studies revealed an inhibitory effect of MIG-6 on AKT phosphorylation as well as MIG-6 and AKT protein interactions. These data suggest that endometrial epithelial cell proliferation is regulated by P4 mediated Mig-6 inhibition of AKT phosphorylation, uncovering new mechanisms of P4 action. This information may help guide more effective non-surgical interventions in the future.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 22%
Student > Postgraduate 4 15%
Researcher 3 11%
Student > Ph. D. Student 3 11%
Other 1 4%
Other 3 11%
Unknown 7 26%
Readers by discipline Count As %
Medicine and Dentistry 11 41%
Biochemistry, Genetics and Molecular Biology 5 19%
Agricultural and Biological Sciences 1 4%
Computer Science 1 4%
Engineering 1 4%
Other 0 0%
Unknown 8 30%