↓ Skip to main content

Prediction of high airway pressure using a non-linear autoregressive model of pulmonary mechanics

Overview of attention for article published in BioMedical Engineering OnLine, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prediction of high airway pressure using a non-linear autoregressive model of pulmonary mechanics
Published in
BioMedical Engineering OnLine, November 2017
DOI 10.1186/s12938-017-0415-y
Pubmed ID
Authors

Ruby Langdon, Paul D. Docherty, Christoph Schranz, J. Geoffrey Chase

Abstract

For mechanically ventilated patients with acute respiratory distress syndrome (ARDS), suboptimal PEEP levels can cause ventilator induced lung injury (VILI). In particular, high PEEP and high peak inspiratory pressures (PIP) can cause over distension of alveoli that is associated with VILI. However, PEEP must also be sufficient to maintain recruitment in ARDS lungs. A lung model that accurately and precisely predicts the outcome of an increase in PEEP may allow dangerous high PIP to be avoided, and reduce the incidence of VILI. Sixteen pressure-flow data sets were collected from nine mechanically ventilated ARDs patients that underwent one or more recruitment manoeuvres. A nonlinear autoregressive (NARX) model was identified on one or more adjacent PEEP steps, and extrapolated to predict PIP at 2, 4, and 6 cmH2O PEEP horizons. The analysis considered whether the predicted and measured PIP exceeded a threshold of 40 cmH2O. A direct comparison of the method was made using the first order model of pulmonary mechanics (FOM(I)). Additionally, a further, more clinically appropriate method for the FOM was tested, in which the FOM was trained on a single PEEP prior to prediction (FOM(II)). The NARX model exhibited very high sensitivity (> 0.96) in all cases, and a high specificity (> 0.88). While both FOM methods had a high specificity (> 0.96), the sensitivity was much lower, with a mean of 0.68 for FOM(I), and 0.82 for FOM(II). Clinically, false negatives are more harmful than false positives, as a high PIP may result in distension and VILI. Thus, the NARX model may be more effective than the FOM in allowing clinicians to reduce the risk of applying a PEEP that results in dangerously high airway pressures.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 18%
Student > Ph. D. Student 3 18%
Student > Postgraduate 2 12%
Student > Master 1 6%
Lecturer > Senior Lecturer 1 6%
Other 0 0%
Unknown 7 41%
Readers by discipline Count As %
Engineering 5 29%
Medicine and Dentistry 3 18%
Mathematics 1 6%
Unknown 8 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 June 2018.
All research outputs
#20,523,725
of 23,092,602 outputs
Outputs from BioMedical Engineering OnLine
#691
of 824 outputs
Outputs of similar age
#287,085
of 329,428 outputs
Outputs of similar age from BioMedical Engineering OnLine
#11
of 13 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 824 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,428 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.