↓ Skip to main content

Predictive model identifies strategies to enhance TSP1-mediated apoptosis signaling

Overview of attention for article published in Cell Communication and Signaling, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Predictive model identifies strategies to enhance TSP1-mediated apoptosis signaling
Published in
Cell Communication and Signaling, December 2017
DOI 10.1186/s12964-017-0207-9
Pubmed ID
Authors

Qianhui Wu, Stacey D. Finley

Abstract

Thrombospondin-1 (TSP1) is a matricellular protein that functions to inhibit angiogenesis. An important pathway that contributes to this inhibitory effect is triggered by TSP1 binding to the CD36 receptor, inducing endothelial cell apoptosis. However, therapies that mimic this function have not demonstrated clear clinical efficacy. This study explores strategies to enhance TSP1-induced apoptosis in endothelial cells. In particular, we focus on establishing a computational model to describe the signaling pathway, and using this model to investigate the effects of several approaches to perturb the TSP1-CD36 signaling network. We constructed a molecularly-detailed mathematical model of TSP1-mediated intracellular signaling via the CD36 receptor based on literature evidence. We employed systems biology tools to train and validate the model and further expanded the model by accounting for the heterogeneity within the cell population. The initial concentrations of signaling species or kinetic rates were altered to simulate the effects of perturbations to the signaling network. Model simulations predict the population-based response to strategies to enhance TSP1-mediated apoptosis, such as downregulating the apoptosis inhibitor XIAP and inhibiting phosphatase activity. The model also postulates a new mechanism of low dosage doxorubicin treatment in combination with TSP1 stimulation. Using computational analysis, we predict which cells will undergo apoptosis, based on the initial intracellular concentrations of particular signaling species. This new mathematical model recapitulates the intracellular dynamics of the TSP1-induced apoptosis signaling pathway. Overall, the modeling framework predicts molecular strategies that increase TSP1-mediated apoptosis, which is useful in many disease settings.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 43%
Researcher 5 24%
Other 1 5%
Professor 1 5%
Student > Doctoral Student 1 5%
Other 2 10%
Unknown 2 10%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 24%
Engineering 5 24%
Agricultural and Biological Sciences 5 24%
Medicine and Dentistry 2 10%
Chemical Engineering 1 5%
Other 2 10%
Unknown 1 5%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 June 2018.
All research outputs
#20,523,725
of 23,092,602 outputs
Outputs from Cell Communication and Signaling
#947
of 1,019 outputs
Outputs of similar age
#376,360
of 440,687 outputs
Outputs of similar age from Cell Communication and Signaling
#11
of 14 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,019 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,687 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.