↓ Skip to main content

Matrix-metalloproteinase-9 is cleaved and activated by Cathepsin K

Overview of attention for article published in BMC Research Notes, July 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

news
6 news outlets

Readers on

mendeley
142 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Matrix-metalloproteinase-9 is cleaved and activated by Cathepsin K
Published in
BMC Research Notes, July 2015
DOI 10.1186/s13104-015-1284-8
Pubmed ID
Authors

Jon Christensen, V Prasad Shastri

Abstract

Matrix-metalloproteinases 9 (MMP-9) belongs to the class of matrix metalloproteinases whose main function is to degrade and remodel the extracellular matrix (ECM). MMP-9 has been shown to be an integral part of many diseases where modulation of the ECM is a key step such as cancer, osteoporosis and fibrosis. MMP-9 is secreted as a latent pro-enzyme that requires activation in the extracellular space. Therefore, identifying physiological and molecular contexts, which can activate MMP-9 is important. Acidification of osteoclast-conditioned media to pH 5 resulted in a fragment with a size corresponding to active MMP-9. Also, treatment of recombinant proMMP-9 with recombinant cathepsin K (CTSK) at pH 5 yielded a fragment that corresponded to the molecular weight of active MMP-9, and showed MMP-9 activity. This activation was abrogated in the presence of CTSK inhibitor indicating that CTSK was responsible for the activation of pro-MMP-9. Knocking down CTSK in MDA-MB-231 cells also diminished MMP-9 activity compared to wild type control. Here we provide the first evidence that CTSK can cleave and activate MMP-9 in acidic environments such as seen in tumors and during bone resorption. This finding provides a key link between CTSK expression in tumors and bone and ECM remodeling, through MMP-9 activation. This novel mechanism to activate MMP-9 through extracellular physiological changes elucidated in this study reveals a protease-signaling network involving CTSK and MMP-9 and provides the impetus to explore ECM proteases as physiological markers and pharmacological targets.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 142 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
Germany 1 <1%
Unknown 140 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 15%
Student > Bachelor 22 15%
Researcher 17 12%
Student > Master 15 11%
Student > Doctoral Student 11 8%
Other 15 11%
Unknown 40 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 34 24%
Agricultural and Biological Sciences 22 15%
Medicine and Dentistry 15 11%
Pharmacology, Toxicology and Pharmaceutical Science 7 5%
Engineering 5 4%
Other 12 8%
Unknown 47 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 42. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 September 2015.
All research outputs
#826,259
of 22,824,164 outputs
Outputs from BMC Research Notes
#69
of 4,262 outputs
Outputs of similar age
#11,193
of 263,430 outputs
Outputs of similar age from BMC Research Notes
#3
of 103 outputs
Altmetric has tracked 22,824,164 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,262 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,430 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 103 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.