↓ Skip to main content

Network hubs in root-associated fungal metacommunities

Overview of attention for article published in Microbiome, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)

Mentioned by

twitter
26 X users
facebook
1 Facebook page

Citations

dimensions_citation
111 Dimensions

Readers on

mendeley
214 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Network hubs in root-associated fungal metacommunities
Published in
Microbiome, June 2018
DOI 10.1186/s40168-018-0497-1
Pubmed ID
Authors

Hirokazu Toju, Akifumi S. Tanabe, Hirotoshi Sato

Abstract

Although a number of recent studies have uncovered remarkable diversity of microbes associated with plants, understanding and managing dynamics of plant microbiomes remain major scientific challenges. In this respect, network analytical methods have provided a basis for exploring "hub" microbial species, which potentially organize community-scale processes of plant-microbe interactions. By compiling Illumina sequencing data of root-associated fungi in eight forest ecosystems across the Japanese Archipelago, we explored hubs within "metacommunity-scale" networks of plant-fungus associations. In total, the metadata included 8080 fungal operational taxonomic units (OTUs) detected from 227 local populations of 150 plant species/taxa. Few fungal OTUs were common across all the eight forests. However, in each of the metacommunity-scale networks representing northern four localities or southern four localities, diverse mycorrhizal, endophytic, and pathogenic fungi were classified as "metacommunity hubs," which were detected from diverse host plant taxa throughout a climatic region. Specifically, Mortierella (Mortierellales), Cladophialophora (Chaetothyriales), Ilyonectria (Hypocreales), Pezicula (Helotiales), and Cadophora (incertae sedis) had broad geographic and host ranges across the northern (cool-temperate) region, while Saitozyma/Cryptococcus (Tremellales/Trichosporonales) and Mortierella as well as some arbuscular mycorrhizal fungi were placed at the central positions of the metacommunity-scale network representing warm-temperate and subtropical forests in southern Japan. The network theoretical framework presented in this study will help us explore prospective fungi and bacteria, which have high potentials for agricultural application to diverse plant species within each climatic region. As some of those fungal taxa with broad geographic and host ranges have been known to promote the survival and growth of host plants, further studies elucidating their functional roles are awaited.

X Demographics

X Demographics

The data shown below were collected from the profiles of 26 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 214 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 214 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 45 21%
Researcher 36 17%
Student > Master 25 12%
Student > Bachelor 18 8%
Student > Doctoral Student 14 7%
Other 23 11%
Unknown 53 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 97 45%
Environmental Science 20 9%
Biochemistry, Genetics and Molecular Biology 19 9%
Immunology and Microbiology 4 2%
Philosophy 2 <1%
Other 7 3%
Unknown 65 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 August 2019.
All research outputs
#2,744,790
of 25,537,395 outputs
Outputs from Microbiome
#1,079
of 1,776 outputs
Outputs of similar age
#54,030
of 342,525 outputs
Outputs of similar age from Microbiome
#43
of 54 outputs
Altmetric has tracked 25,537,395 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,776 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.0. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,525 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.