↓ Skip to main content

Alzheimer’s disease master regulators analysis: search for potential molecular targets and drug repositioning candidates

Overview of attention for article published in Alzheimer's Research & Therapy, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
2 news outlets
twitter
5 X users
facebook
1 Facebook page

Citations

dimensions_citation
70 Dimensions

Readers on

mendeley
94 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Alzheimer’s disease master regulators analysis: search for potential molecular targets and drug repositioning candidates
Published in
Alzheimer's Research & Therapy, June 2018
DOI 10.1186/s13195-018-0394-7
Pubmed ID
Authors

D. M. Vargas, M. A. De Bastiani, E. R. Zimmer, F. Klamt

Abstract

Alzheimer's disease (AD) is a multifactorial and complex neuropathology that involves impairment of many intricate molecular mechanisms. Despite recent advances, AD pathophysiological characterization remains incomplete, which hampers the development of effective treatments. In fact, currently, there are no effective pharmacological treatments for AD. Integrative strategies such as transcription regulatory network and master regulator analyses exemplify promising new approaches to study complex diseases and may help in the identification of potential pharmacological targets. In this study, we used transcription regulatory network and master regulator analyses on transcriptomic data of human hippocampus to identify transcription factors (TFs) that can potentially act as master regulators in AD. All expression profiles were obtained from the Gene Expression Omnibus database using the GEOquery package. A normal hippocampus transcription factor-centered regulatory network was reconstructed using the ARACNe algorithm. Master regulator analysis and two-tail gene set enrichment analysis were employed to evaluate the inferred regulatory units in AD case-control studies. Finally, we used a connectivity map adaptation to prospect new potential therapeutic interventions by drug repurposing. We identified TFs with already reported involvement in AD, such as ATF2 and PARK2, as well as possible new targets for future investigations, such as CNOT7, CSRNP2, SLC30A9, and TSC22D1. Furthermore, Connectivity Map Analysis adaptation suggested the repositioning of six FDA-approved drugs that can potentially modulate master regulator candidate regulatory units (Cefuroxime, Cyproterone, Dydrogesterone, Metrizamide, Trimethadione, and Vorinostat). Using a transcription factor-centered regulatory network reconstruction we were able to identify several potential molecular targets and six drug candidates for repositioning in AD. Our study provides further support for the use of bioinformatics tools as exploratory strategies in neurodegenerative diseases research, and also provides new perspectives on molecular targets and drug therapies for future investigation and validation in AD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 94 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 94 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 19 20%
Student > Ph. D. Student 13 14%
Student > Master 10 11%
Researcher 8 9%
Student > Doctoral Student 3 3%
Other 11 12%
Unknown 30 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 21 22%
Pharmacology, Toxicology and Pharmaceutical Science 9 10%
Agricultural and Biological Sciences 9 10%
Neuroscience 7 7%
Computer Science 3 3%
Other 10 11%
Unknown 35 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 18. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2022.
All research outputs
#1,811,319
of 23,575,346 outputs
Outputs from Alzheimer's Research & Therapy
#329
of 1,301 outputs
Outputs of similar age
#39,614
of 329,526 outputs
Outputs of similar age from Alzheimer's Research & Therapy
#16
of 32 outputs
Altmetric has tracked 23,575,346 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,301 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 26.7. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,526 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.