↓ Skip to main content

Accuracy of imputation using the most common sires as reference population in layer chickens

Overview of attention for article published in BMC Genomic Data, August 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Accuracy of imputation using the most common sires as reference population in layer chickens
Published in
BMC Genomic Data, August 2015
DOI 10.1186/s12863-015-0253-5
Pubmed ID
Authors

Marzieh Heidaritabar, Mario P. L. Calus, Addie Vereijken, Martien A. M. Groenen, John W. M. Bastiaansen

Abstract

Genotype imputation has become a standard practice in modern genetic research to increase genome coverage and improve the accuracy of genomic selection (GS) and genome-wide association studies (GWAS). We assessed accuracies of imputing 60K genotype data from lower density single nucleotide polymorphism (SNP) panels using a small set of the most common sires in a population of 2140 white layer chickens. Several factors affecting imputation accuracy were investigated, including the size of the reference population, the level of the relationship between the reference and validation populations, and minor allele frequency (MAF) of the SNP being imputed. The accuracy of imputation was assessed with different scenarios using 22 and 62 carefully selected reference animals (Ref22 and Ref62). Animal-specific imputation accuracy corrected for gene content was moderate on average (~ 0.80) in most scenarios and low in the 3K to 60K scenario. Maximum average accuracies were 0.90 and 0.93 for the most favourable scenario for Ref22 and Ref62 respectively, when SNPs were masked independent of their MAF. SNPs with low MAF were more difficult to impute, and the larger reference population considerably improved the imputation accuracy for these rare SNPs. When Ref22 was used for imputation, the average imputation accuracy decreased by 0.04 when validation population was two instead of one generation away from the reference and increased again by 0.05 when validation was three generations away. Selecting the reference animals from the most common sires, compared with random animals from the population, considerably improved imputation accuracy for low MAF SNPs, but gave only limited improvement for other MAF classes. The allelic R(2) measure from Beagle software was found to be a good predictor of imputation reliability (correlation ~ 0.8) when the density of validation panel was very low (3K) and the MAF of the SNP and the size of the reference population were not extremely small. Even with a very small number of animals in the reference population, reasonable accuracy of imputation can be achieved. Selecting a set of the most common sires, rather than selecting random animals for the reference population, improves the imputation accuracy of rare alleles, which may be a benefit when imputing with whole genome re-sequencing data.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Denmark 1 4%
Unknown 24 92%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 5 19%
Researcher 5 19%
Student > Ph. D. Student 5 19%
Other 3 12%
Student > Bachelor 3 12%
Other 5 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 81%
Unspecified 1 4%
Biochemistry, Genetics and Molecular Biology 1 4%
Social Sciences 1 4%
Unknown 2 8%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2015.
All research outputs
#19,942,887
of 25,371,288 outputs
Outputs from BMC Genomic Data
#786
of 1,204 outputs
Outputs of similar age
#190,317
of 277,639 outputs
Outputs of similar age from BMC Genomic Data
#22
of 37 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,204 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,639 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.