↓ Skip to main content

Interaction of caffeine with the SOS response pathway in Escherichia coli

Overview of attention for article published in Gut Pathogens, August 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#26 of 588)
  • High Attention Score compared to outputs of the same age (91st percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
6 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interaction of caffeine with the SOS response pathway in Escherichia coli
Published in
Gut Pathogens, August 2015
DOI 10.1186/s13099-015-0069-x
Pubmed ID
Authors

Alyssa K Whitney, Tiffany L Weir

Abstract

Previous studies have highlighted the antimicrobial activity of caffeine, both individually and in combination with other compounds. A proposed mechanism for caffeine's antimicrobial effects is inhibition of bacterial DNA repair pathways. The current study examines the influence of sub-lethal caffeine levels on the growth and morphology of SOS response pathway mutants of Escherichia coli. Growth inhibition after treatment with caffeine and methyl methane sulfonate (MMS), a mutagenic agent, was determined for E. coli mutants lacking key genes in the SOS response pathway. The persistence of caffeine's effects was explored by examining growth and morphology of caffeine and MMS-treated bacterial isolates in the absence of selective pressure. Caffeine significantly reduced growth of E. coli recA- and uvrA-mutants treated with MMS. However, there was no significant difference in growth between umuC-isolates treated with MMS alone and MMS in combination with caffeine after 48 h of incubation. When recA-isolates from each treatment group were grown in untreated medium, bacterial isolates that had been exposed to MMS or MMS with caffeine showed increased growth relative to controls and caffeine-treated isolates. Morphologically, recA-isolates that had been treated with caffeine and both caffeine and MMS together had begun to display filamentous growth. Caffeine treatment further reduced growth of recA- and uvrA-mutants treated with MMS, despite a non-functional SOS response pathway. However, addition of caffeine had very little effect on MMS inhibition of umuC-mutants. Thus, growth inhibition of E. coli with caffeine treatment may be driven by caffeine interaction with UmuC, but also appears to induce damage by additional mechanisms as evidenced by the additive effects of caffeine in recA- and uvrA-mutants.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 10 22%
Student > Master 7 15%
Researcher 5 11%
Student > Ph. D. Student 5 11%
Lecturer 3 7%
Other 5 11%
Unknown 11 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 24%
Biochemistry, Genetics and Molecular Biology 11 24%
Medicine and Dentistry 3 7%
Business, Management and Accounting 3 7%
Immunology and Microbiology 2 4%
Other 6 13%
Unknown 10 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 22. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 December 2015.
All research outputs
#1,679,230
of 25,067,172 outputs
Outputs from Gut Pathogens
#26
of 588 outputs
Outputs of similar age
#21,772
of 272,064 outputs
Outputs of similar age from Gut Pathogens
#2
of 9 outputs
Altmetric has tracked 25,067,172 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 588 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 272,064 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 7 of them.