↓ Skip to main content

Recruitment of Dorsal Midbrain Catecholaminergic Pathways in the Recovery from Nerve Injury Evoked Disabilities

Overview of attention for article published in Molecular Pain, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Recruitment of Dorsal Midbrain Catecholaminergic Pathways in the Recovery from Nerve Injury Evoked Disabilities
Published in
Molecular Pain, August 2015
DOI 10.1186/s12990-015-0049-7
Pubmed ID
Authors

David Mor, James W M Kang, Peter Wyllie, Vignaraja Thirunavukarasu, Hayden Houlton, Paul J Austin, Kevin A Keay

Abstract

The periaqueductal gray region (PAG) is one of several brain areas identified to be vulnerable to structural and functional change following peripheral nerve injury. Sciatic nerve constriction injury (CCI) triggers neuropathic pain and three distinct profiles of changes in complex behaviours, which include altered social and sleep-wake behaviours as well as changes in endocrine function. The PAG encompasses subgroups of the A10 dopaminergic and A6 noradrenergic cell groups; the origins of significant ascending projections to hypothalamic and forebrain regions, which regulate sleep, complex behaviours and endocrine function. We used RT-PCR, western blots and immunohistochemistry for tyrosine hydroxylase to determine whether (1) tyrosine hydroxylase increased in the A10/A6 cells and/or; (2) de novo synthesis of tyrosine hydroxylase, in a 'TH-naïve' population of ventral PAG neurons characterized rats with distinct patterns of behavioural and endocrine change co-morbid with CCI evoked-pain. Evidence for increased tyrosine hydroxylase transcription and translation in the constitutive A10/A6 cells was found in the midbrain of rats that showed an initial 2-3 day post-CCI, behavioural and endocrine change, which recovered by days 5-6 post-CCI. Furthermore these rats showed significant increases in the density of TH-IR fibres in the vPAG. Our data provide evidence for: (1) potential increases in dopamine and noradrenaline synthesis in vPAG cells; and (2) increased catecholaminergic drive on vPAG neurons in rats in which transient changes in social behavior are seen following CCI. The data suggests a role for dopaminergic and noradrenergic outputs, and catecholaminergic inputs of the vPAG in the expression of one of the profiles of behavioural and endocrine change triggered by nerve injury.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 14%
Other 2 9%
Student > Ph. D. Student 2 9%
Professor 2 9%
Lecturer > Senior Lecturer 1 5%
Other 4 18%
Unknown 8 36%
Readers by discipline Count As %
Neuroscience 4 18%
Medicine and Dentistry 2 9%
Biochemistry, Genetics and Molecular Biology 1 5%
Agricultural and Biological Sciences 1 5%
Psychology 1 5%
Other 5 23%
Unknown 8 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 March 2016.
All research outputs
#16,721,717
of 25,374,647 outputs
Outputs from Molecular Pain
#331
of 669 outputs
Outputs of similar age
#157,302
of 277,646 outputs
Outputs of similar age from Molecular Pain
#4
of 12 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 669 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,646 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.