↓ Skip to main content

Determination of aortic stiffness using 4D flow cardiovascular magnetic resonance - a population-based study

Overview of attention for article published in Critical Reviews in Diagnostic Imaging, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
32 X users
facebook
1 Facebook page

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
91 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Determination of aortic stiffness using 4D flow cardiovascular magnetic resonance - a population-based study
Published in
Critical Reviews in Diagnostic Imaging, June 2018
DOI 10.1186/s12968-018-0461-z
Pubmed ID
Authors

Andreas Harloff, Hanieh Mirzaee, Thomas Lodemann, Paul Hagenlocher, Thomas Wehrum, Judith Stuplich, Anja Hennemuth, Jürgen Hennig, Sebastian Grundmann, Werner Vach

Abstract

Increased aortic stiffness is an independent predictor of cardiovascular disease. Optimal measurement is highly beneficial for the detection of atherosclerosis and the management of patients at risk. Thus, it was our purpose to selectively measure aortic stiffness using a novel imaging method and to provide reference values from a population-based study. One hundred twenty six inhabitants of Freiburg, Germany, between 20 and 80 years prospectively underwent 3 Tesla cardiovascular magnetic resonance (CMR) of the thoracic aorta. 4D flow CMR (spatial/temporal resolution 2mm3/20ms) was executed to calculate aortic pulse wave velocity (PWV) in m/s using dedicated software. In addition, we calculated distensibility coefficients (DC) using 2D CINE CMR imaging of the ascending (AAo) and descending aorta (DAo). Segmental aortic diameter and thickness of aortic plaques were determined by 3D T1 weighted CMR (spatial resolution 1mm3). PWV increased from 4.93 ± 0.54 m/s in 20-30 year-old to 8.06 ± 1.03 m/s in 70-80 year-old subjects. PWV was significantly lower in women compared to men (p < 0.0001). Increased blood pressure (systolic r = 0.36, p < 0.0001; diastolic r = 0.33, p = 0.0001; mean arterial pressure r = 0.37, p < 0.0001) correlated with PWV after adjustment for age and gender. Finally, PWV increased with increasing diameter of the aorta (ascending aorta r = 0.20, p = 0.026; aortic arch r = 0.24, p = 0.009; descending aorta r = 0.26, p = 0.004). Correlation of PWV and DC of the AAo and DAo or the mean of both was high (r = 0.69, r = 0.68, r = 0.73; p < 0.001). 4D flow CMR was successfully applied to calculate aortic PWV and thus aortic stiffness. Findings showed a high correlation with distensibility coefficients representing local compliance of the aorta. Our novel method and reference data for PWV may provide a reliable biomarker for the identification of patients with underlying cardiovascular disease and optimal guidance of future treatment in studies or clinical routine.

X Demographics

X Demographics

The data shown below were collected from the profiles of 32 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 91 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 91 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 21%
Researcher 16 18%
Student > Master 7 8%
Student > Bachelor 6 7%
Student > Doctoral Student 5 5%
Other 11 12%
Unknown 27 30%
Readers by discipline Count As %
Medicine and Dentistry 28 31%
Engineering 13 14%
Computer Science 5 5%
Mathematics 2 2%
Sports and Recreations 2 2%
Other 9 10%
Unknown 32 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 January 2019.
All research outputs
#1,983,786
of 25,711,518 outputs
Outputs from Critical Reviews in Diagnostic Imaging
#69
of 1,386 outputs
Outputs of similar age
#40,146
of 342,518 outputs
Outputs of similar age from Critical Reviews in Diagnostic Imaging
#3
of 23 outputs
Altmetric has tracked 25,711,518 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,386 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,518 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.