↓ Skip to main content

Dysequilibrium of the PTH-FGF23-vitamin D axis in relapsing remitting multiple sclerosis; a longitudinal study

Overview of attention for article published in Molecular Medicine, May 2018
Altmetric Badge

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dysequilibrium of the PTH-FGF23-vitamin D axis in relapsing remitting multiple sclerosis; a longitudinal study
Published in
Molecular Medicine, May 2018
DOI 10.1186/s10020-018-0028-3
Pubmed ID
Authors

Mark Simon Stein, Gregory John Ward, Helmut Butzkueven, Trevor John Kilpatrick, Leonard Charles Harrison

Abstract

Parathyroid glands of people with relapsing remitting multiple sclerosis (RRMS) fail to respond to low serum 25-hydroxyvitamin D (25OHD) and low serum calcium, which are stimuli for parathyroid hormone (PTH) secretion. This led us to hypothesise: that there is suppression of PTH in RRMS due to higher than normal serum concentrations of fibroblast growth factor 23 (FGF23). We therefore sought evidence for dysregulation of the PTH-FGF23-vitamin D axis in RRMS. Longitudinal study (winter to summer) with fasting venepunctures. For RRMS subjects who recruited a healthy control (HC) friend, pairs analyses were performed. For each pair, the within-pair difference of the variable of interest was calculated (RRMS minus HC). Then, the median of the differences from all pairs was compared against a median of zero (Wilcoxon) and the 95% confidence interval of that median difference (CI) was calculated (Sign Test). RRMS had lower winter PTH than HC, P = 0.005, (CI -2.4 to 0.5 pmol/L, n = 28 pairs), and lower summer PTH, P = 0.04, (CI -1.8 to 0.5, n = 21 pairs). Lower PTH associates physiologically with lower intact FGF23 (iFGF23), yet RRMS had higher iFGF23 than HC in winter, P = 0.04, (CI -3 to 15 pg/mL, n = 28 pairs) and iFGF23 levels comparable to HC in summer, P = 0.14, (CI -5 to 13, n = 21 pairs). As PTH stimulates and FGF23 reduces, renal 1-alpha hydroxylase enzyme activity, which synthesises serum 1,25-dihyroxyvitamin D (1,25(OH)2D) from serum 25OHD, we examined the ratio of serum 1,25(OH)2D to serum 25OHD. In winter, this ratio was lower in RRMS versus HC, P = 0.013, (CI -1.2 to - 0.3, n = 28 pairs). This study revealed a dysequilibrium of the PTH-FGF23-vitamin D axis in RRMS, with lower plasma PTH, higher plasma iFGF23 and a lower serum 1,25(OH)2D to 25OHD ratio in RRMS compared with HC subjects. This dysequilibrium is consistent with the study hypothesis that in RRMS there is suppression of the parathyroid glands by inappropriately high plasma concentrations of iFGF23. Studying the basis of this dysequilibrium may provide insight into the pathogenesis of RRMS.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 16%
Student > Master 3 9%
Unspecified 2 6%
Student > Ph. D. Student 2 6%
Student > Bachelor 2 6%
Other 3 9%
Unknown 15 47%
Readers by discipline Count As %
Medicine and Dentistry 5 16%
Unspecified 2 6%
Nursing and Health Professions 2 6%
Biochemistry, Genetics and Molecular Biology 1 3%
Veterinary Science and Veterinary Medicine 1 3%
Other 4 13%
Unknown 17 53%