↓ Skip to main content

PCR-based detection of Plasmodium falciparum in saliva using mitochondrial cox3 and varATS primers

Overview of attention for article published in Tropical Medicine and Health, June 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

policy
1 policy source
twitter
3 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
PCR-based detection of Plasmodium falciparum in saliva using mitochondrial cox3 and varATS primers
Published in
Tropical Medicine and Health, June 2018
DOI 10.1186/s41182-018-0100-2
Pubmed ID
Authors

Yukie M. Lloyd, Livo F. Esemu, Jovikka Antallan, Bradley Thomas, Samuel Tassi Yunga, Bekindaka Obase, Nana Christine, Rose G. F. Leke, Richard Culleton, Kenji Obadiah Mfuh, Vivek R. Nerurkar, Diane Wallace Taylor

Abstract

Sampling of saliva for diagnosing Plasmodium falciparum infections is a safe, non-invasive alternative to sampling of blood. However, the use of saliva presents a challenge because lower concentrations of parasite DNA are present in saliva compared to peripheral blood. Therefore, a sensitive method is needed for detection of parasite DNA in saliva. This study utilized two recently reported "ultra-sensitive" PCR assays based on detection of the P. falciparum mitochondrial cox3 gene and the multi-copy nuclear varATS gene. The ultra-sensitive assays have an advantage over standard 18S rRNA gene-based PCR assay as they target genes with higher copy numbers per parasite genome. Stored saliva DNA samples from 60 Cameroonian individuals with infections previously confirmed by 18S rRNA gene PCR in peripheral blood were tested with assays targeting the cox3 and varATS genes. Overall, the standard 18S rRNA gene-based PCR assay detected P. falciparum DNA in 62% of the stored saliva DNA samples, whereas 77 and 68% of the samples were positive with assays that target the cox3 and varATS genes, respectively. Interestingly, the ultra-sensitive assays detected more P. falciparum infections in stored saliva samples than were originally detected by thick-film microscopy (41/60 = 68%). When stratified by number of parasites in the blood, the cox3 assay successfully detected more than 90% of infections using saliva when individuals had > 1000 parasites/μl of peripheral blood, but sensitivity was reduced at submicroscopic parasitemia levels. Bands on electrophoresis gels were distinct for the cox3 assay, whereas faint or non-specific bands were sometimes observed for varATS and 18S rRNA that made interpretation of results difficult. Assays could be completed in 3.5 and 3 h for the cox3 and varATS assays, respectively, whereas the 18S rRNA gene assays required at least 7 h. This study demonstrates that a PCR assay targeting the cox3 gene detected P. falciparum DNA in more saliva samples than primers for the 18S rRNA gene. Non-invasive collection of saliva in combination with the proposed cox3 primer-based PCR assay could potentially enhance routine testing of P. falciparum during disease surveillance, monitoring, and evaluation of interventions for malaria elimination.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 18%
Student > Master 9 18%
Researcher 8 16%
Student > Bachelor 4 8%
Professor > Associate Professor 3 6%
Other 8 16%
Unknown 10 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 29%
Medicine and Dentistry 6 12%
Engineering 3 6%
Unspecified 2 4%
Environmental Science 2 4%
Other 10 20%
Unknown 13 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 December 2022.
All research outputs
#7,050,597
of 25,385,509 outputs
Outputs from Tropical Medicine and Health
#85
of 441 outputs
Outputs of similar age
#114,361
of 342,290 outputs
Outputs of similar age from Tropical Medicine and Health
#2
of 9 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 441 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,290 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 7 of them.