↓ Skip to main content

Signatures of ecological processes in microbial community time series

Overview of attention for article published in Microbiome, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
31 X users

Citations

dimensions_citation
76 Dimensions

Readers on

mendeley
302 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Signatures of ecological processes in microbial community time series
Published in
Microbiome, June 2018
DOI 10.1186/s40168-018-0496-2
Pubmed ID
Authors

Karoline Faust, Franziska Bauchinger, Béatrice Laroche, Sophie de Buyl, Leo Lahti, Alex D. Washburne, Didier Gonze, Stefanie Widder

Abstract

Growth rates, interactions between community members, stochasticity, and immigration are important drivers of microbial community dynamics. In sequencing data analysis, such as network construction and community model parameterization, we make implicit assumptions about the nature of these drivers and thereby restrict model outcome. Despite apparent risk of methodological bias, the validity of the assumptions is rarely tested, as comprehensive procedures are lacking. Here, we propose a classification scheme to determine the processes that gave rise to the observed time series and to enable better model selection. We implemented a three-step classification scheme in R that first determines whether dependence between successive time steps (temporal structure) is present in the time series and then assesses with a recently developed neutrality test whether interactions between species are required for the dynamics. If the first and second tests confirm the presence of temporal structure and interactions, then parameters for interaction models are estimated. To quantify the importance of temporal structure, we compute the noise-type profile of the community, which ranges from black in case of strong dependency to white in the absence of any dependency. We applied this scheme to simulated time series generated with the Dirichlet-multinomial (DM) distribution, Hubbell's neutral model, the generalized Lotka-Volterra model and its discrete variant (the Ricker model), and a self-organized instability model, as well as to human stool microbiota time series. The noise-type profiles for all but DM data clearly indicated distinctive structures. The neutrality test correctly classified all but DM and neutral time series as non-neutral. The procedure reliably identified time series for which interaction inference was suitable. Both tests were required, as we demonstrated that all structured time series, including those generated with the neutral model, achieved a moderate to high goodness of fit to the Ricker model. We present a fast and robust scheme to classify community structure and to assess the prevalence of interactions directly from microbial time series data. The procedure not only serves to determine ecological drivers of microbial dynamics, but also to guide selection of appropriate community models for prediction and follow-up analysis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 31 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 302 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 302 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 84 28%
Researcher 67 22%
Student > Master 34 11%
Student > Bachelor 21 7%
Student > Doctoral Student 14 5%
Other 34 11%
Unknown 48 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 92 30%
Environmental Science 35 12%
Biochemistry, Genetics and Molecular Biology 34 11%
Immunology and Microbiology 22 7%
Medicine and Dentistry 12 4%
Other 44 15%
Unknown 63 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 23. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 November 2020.
All research outputs
#1,619,117
of 24,885,505 outputs
Outputs from Microbiome
#596
of 1,705 outputs
Outputs of similar age
#33,945
of 335,270 outputs
Outputs of similar age from Microbiome
#27
of 52 outputs
Altmetric has tracked 24,885,505 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,705 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.5. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,270 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.