↓ Skip to main content

Preliminary evaluation of the publicly available Laboratory for Breast Radiodensity Assessment (LIBRA) software tool: comparison of fully automated area and volumetric density measures in a case–contro…

Overview of attention for article published in Breast Cancer Research, August 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
78 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Preliminary evaluation of the publicly available Laboratory for Breast Radiodensity Assessment (LIBRA) software tool: comparison of fully automated area and volumetric density measures in a case–control study with digital mammography
Published in
Breast Cancer Research, August 2015
DOI 10.1186/s13058-015-0626-8
Pubmed ID
Authors

Brad M. Keller, Jinbo Chen, Dania Daye, Emily F. Conant, Despina Kontos

Abstract

Breast density, commonly quantified as the percentage of mammographically dense tissue area, is a strong breast cancer risk factor. We investigated associations between breast cancer and fully automated measures of breast density made by a new publicly available software tool, the Laboratory for Individualized Breast Radiodensity Assessment (LIBRA). Digital mammograms from 106 invasive breast cancer cases and 318 age-matched controls were retrospectively analyzed. Density estimates acquired by LIBRA were compared with commercially available software and standard Breast Imaging-Reporting and Data System (BI-RADS) density estimates. Associations between the different density measures and breast cancer were evaluated by using logistic regression after adjustment for Gail risk factors and body mass index (BMI). Area under the curve (AUC) of the receiver operating characteristic (ROC) was used to assess discriminatory capacity, and odds ratios (ORs) for each density measure are provided. All automated density measures had a significant association with breast cancer (OR = 1.47-2.23, AUC = 0.59-0.71, P < 0.01) which was strengthened after adjustment for Gail risk factors and BMI (OR = 1.96-2.64, AUC = 0.82-0.85, P < 0.001). In multivariable analysis, absolute dense area (OR = 1.84, P < 0.001) and absolute dense volume (OR = 1.67, P = 0.003) were jointly associated with breast cancer (AUC = 0.77, P < 0.01), having a larger discriminatory capacity than models considering the Gail risk factors alone (AUC = 0.64, P < 0.001) or the Gail risk factors plus standard area percent density (AUC = 0.68, P = 0.01). After BMI was further adjusted for, absolute dense area retained significance (OR = 2.18, P < 0.001) and volume percent density approached significance (OR = 1.47, P = 0.06). This combined area-volume density model also had a significantly (P < 0.001) improved discriminatory capacity (AUC = 0.86) relative to a model considering the Gail risk factors plus BMI (AUC = 0.80). Our study suggests that new automated density measures may ultimately augment the current standard breast cancer risk factors. In addition, the ability to fully automate density estimation with digital mammography, particularly through the use of publically available breast density estimation software, could accelerate the translation of density reporting in routine breast cancer screening and surveillance protocols and facilitate broader research into the use of breast density as a risk factor for breast cancer.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 70 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 20%
Student > Bachelor 11 16%
Researcher 8 11%
Student > Doctoral Student 5 7%
Other 4 6%
Other 8 11%
Unknown 20 29%
Readers by discipline Count As %
Medicine and Dentistry 14 20%
Computer Science 11 16%
Nursing and Health Professions 7 10%
Engineering 5 7%
Physics and Astronomy 4 6%
Other 5 7%
Unknown 24 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 August 2015.
All research outputs
#20,656,820
of 25,374,647 outputs
Outputs from Breast Cancer Research
#1,706
of 2,053 outputs
Outputs of similar age
#205,160
of 279,409 outputs
Outputs of similar age from Breast Cancer Research
#38
of 43 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,053 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.2. This one is in the 8th percentile – i.e., 8% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,409 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.