↓ Skip to main content

Effects of handrail hold and light touch on energetics, step parameters, and neuromuscular activity during walking after stroke

Overview of attention for article published in Journal of NeuroEngineering and Rehabilitation, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
126 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of handrail hold and light touch on energetics, step parameters, and neuromuscular activity during walking after stroke
Published in
Journal of NeuroEngineering and Rehabilitation, August 2015
DOI 10.1186/s12984-015-0051-3
Pubmed ID
Authors

T. IJmker, C. J. Lamoth, H. Houdijk, M. Tolsma, L. H. V. van der Woude, A. Daffertshofer, P. J. Beek

Abstract

Holding a handrail or using a cane may decrease the energy cost of walking in stroke survivors. However, the factors underlying this decrease have not yet been previously identified. The purpose of the current study was to fill this void by investigating the effect of physical support (through handrail hold) and/or somatosensory input (through light touch contact with a handrail) on energy cost and accompanying changes in both step parameters and neuromuscular activity. Elucidating these aspects may provide useful insights into gait recovery post stroke. Fifteen stroke survivors participated in this study. Participants walked on a treadmill under three conditions: no handrail contact, light touch of the handrail, and firm handrail hold. During the trials we recorded oxygen consumption, center of pressure profiles, and bilateral activation of eight lower limb muscles. Effects of the three conditions on energy cost, step parameters and neuromuscular activation were compared statistically using conventional ANOVAs with repeated measures. In order to examine to which extent energy cost and step parameters/muscle activity are associated, we further employed a partial least squares regression analysis. Handrail hold resulted in a significant reduction in energy cost, whereas light touch contact did not. With handrail hold subjects took longer steps with smaller step width and improved step length symmetry, whereas light touch contact only resulted in a small but significant decrease in step width. The EMG analysis indicated a global drop in muscle activity, accompanied by an increased constancy in the timing of this activity, and a decreased co-activation with handrail hold, but not with light touch. The regression analysis revealed that increased stride time and length, improved step length symmetry, and decreased muscle activity were closely associated with the decreased energy cost during handrail hold. Handrail hold, but not light touch, altered step parameters and was accompanied by a global reduction in muscle activity, with improved timing constancy. This suggests that the use of a handrail allows for a more economic step pattern that requires less muscular activation without resulting in substantial neuromuscular re-organization. Handrail use may thus have beneficial effects on gait economy after stroke, which cannot be accomplished through enhanced somatosensory input alone.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 126 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 126 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 20%
Student > Master 22 17%
Researcher 14 11%
Student > Bachelor 14 11%
Professor 5 4%
Other 17 13%
Unknown 29 23%
Readers by discipline Count As %
Medicine and Dentistry 28 22%
Engineering 24 19%
Nursing and Health Professions 18 14%
Sports and Recreations 8 6%
Neuroscience 7 6%
Other 9 7%
Unknown 32 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 December 2019.
All research outputs
#14,736,006
of 23,596,168 outputs
Outputs from Journal of NeuroEngineering and Rehabilitation
#749
of 1,315 outputs
Outputs of similar age
#140,237
of 267,624 outputs
Outputs of similar age from Journal of NeuroEngineering and Rehabilitation
#12
of 19 outputs
Altmetric has tracked 23,596,168 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,315 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.2. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,624 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.