↓ Skip to main content

Recurrence quantification analysis of resting state EEG signals in autism spectrum disorder – a systematic methodological exploration of technical and demographic confounders in the search for…

Overview of attention for article published in BMC Medicine, July 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
69 Dimensions

Readers on

mendeley
209 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Recurrence quantification analysis of resting state EEG signals in autism spectrum disorder – a systematic methodological exploration of technical and demographic confounders in the search for biomarkers
Published in
BMC Medicine, July 2018
DOI 10.1186/s12916-018-1086-7
Pubmed ID
Authors

T. Heunis, C. Aldrich, J. M. Peters, S. S. Jeste, M. Sahin, C. Scheffer, P. J. de Vries

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a worldwide prevalence of 1-2%. In low-resource environments, in particular, early identification and diagnosis is a significant challenge. Therefore, there is a great demand for 'language-free, culturally fair' low-cost screening tools for ASD that do not require highly trained professionals. Electroencephalography (EEG) has seen growing interest as an investigational tool for biomarker development in ASD and neurodevelopmental disorders. One of the key challenges is the identification of appropriate multivariate, next-generation analytical methodologies that can characterise the complex, nonlinear dynamics of neural networks in the brain, mindful of technical and demographic confounders that may influence biomarker findings. The aim of this study was to evaluate the robustness of recurrence quantification analysis (RQA) as a potential biomarker for ASD using a systematic methodological exploration of a range of potential technical and demographic confounders. RQA feature extraction was performed on continuous 5-second segments of resting state EEG (rsEEG) data and linear and nonlinear classifiers were tested. Data analysis progressed from a full sample of 16 ASD and 46 typically developing (TD) individuals (age 0-18 years, 4802 EEG segments), to a subsample of 16 ASD and 19 TD children (age 0-6 years, 1874 segments), to an age-matched sample of 7 ASD and 7 TD children (age 2-6 years, 666 segments) to prevent sample bias and to avoid misinterpretation of the classification results attributable to technical and demographic confounders. A clinical scenario of diagnosing an unseen subject was simulated using a leave-one-subject-out classification approach. In the age-matched sample, leave-one-subject-out classification with a nonlinear support vector machine classifier showed 92.9% accuracy, 100% sensitivity and 85.7% specificity in differentiating ASD from TD. Age, sex, intellectual ability and the number of training and test segments per group were identified as possible demographic and technical confounders. Consistent repeatability, i.e. the correct identification of all segments per subject, was found to be a challenge. RQA of rsEEG was an accurate classifier of ASD in an age-matched sample, suggesting the potential of this approach for global screening in ASD. However, this study also showed experimentally how a range of technical challenges and demographic confounders can skew results, and highlights the importance of probing for these in future studies. We recommend validation of this methodology in a large and well-matched sample of infants and children, preferably in a low- and middle-income setting.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 209 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 209 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 27 13%
Student > Ph. D. Student 25 12%
Researcher 19 9%
Student > Bachelor 19 9%
Other 11 5%
Other 34 16%
Unknown 74 35%
Readers by discipline Count As %
Psychology 27 13%
Neuroscience 23 11%
Medicine and Dentistry 20 10%
Engineering 13 6%
Computer Science 13 6%
Other 29 14%
Unknown 84 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 July 2018.
All research outputs
#17,981,442
of 23,094,276 outputs
Outputs from BMC Medicine
#3,167
of 3,466 outputs
Outputs of similar age
#237,014
of 327,941 outputs
Outputs of similar age from BMC Medicine
#59
of 64 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,466 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 43.6. This one is in the 6th percentile – i.e., 6% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,941 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 64 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.