↓ Skip to main content

Exploration of hydroxymethylation in Kagami-Ogata syndrome caused by hypermethylation of imprinting control regions

Overview of attention for article published in Clinical Epigenetics, August 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
7 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exploration of hydroxymethylation in Kagami-Ogata syndrome caused by hypermethylation of imprinting control regions
Published in
Clinical Epigenetics, August 2015
DOI 10.1186/s13148-015-0124-y
Pubmed ID
Authors

Keiko Matsubara, Masayo Kagami, Kazuhiko Nakabayashi, Kenichiro Hata, Maki Fukami, Tsutomu Ogata, Kazuki Yamazawa

Abstract

5-Hydroxymethylcytosine (5hmC), converted from 5-methylcytosine (5mC) by ten-eleven translocation (Tet) enzymes, has recently drawn attention as the "sixth base" of DNA since it is considered an intermediate of the demethylation pathway. Nonetheless, it remains to be addressed how 5hmC is linked to the development of human imprinting disorders. In this regard, conventional bisulfite (BS) treatment is unable to differentiate 5hmC from 5mC. It is thus hypothesized that BS conversion-derived "hypermethylation" at imprinting control regions (ICRs), which may cause imprinting disorders, would in fact be attributable to excessively increased levels of 5hmC as well as 5mC. To test this hypothesis, we applied the newly developed oxidative BS (oxBS) treatment to detect 5hmC in blood samples from Kagami-Ogata syndrome (KOS14) patients caused by an epimutation (hypermethylation) of two differentially methylated regions (DMRs) functioning as ICRs, namely, IG-DMR and MEG3-DMR. oxBS with pyrosequencing revealed that there were few amounts of 5hmC at the hypermethylated IG-DMR and MEG3-DMR in blood samples from KOS14 patients. oxBS with genome-wide methylation array demonstrated that global levels of 5hmC were very low with similar distribution patterns in blood samples from KOS14 patients and normal controls. We also confirmed the presence of large amounts of 5hmC in the brain sample from a normal control. 5hmC is not a major component in abnormally hypermethylated ICRs or at a global level, at least in blood from KOS14 patients. As the brain sample contained large amounts of 5hmC, the neural tissues of KOS14 patients are promising candidates for analysis in elucidating the role of 5hmC in the neurodevelopmental context.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 5%
Unknown 20 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 19%
Researcher 4 19%
Student > Master 3 14%
Other 2 10%
Unspecified 1 5%
Other 1 5%
Unknown 6 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 29%
Agricultural and Biological Sciences 5 24%
Medicine and Dentistry 2 10%
Veterinary Science and Veterinary Medicine 1 5%
Unspecified 1 5%
Other 0 0%
Unknown 6 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 August 2015.
All research outputs
#7,148,903
of 25,374,647 outputs
Outputs from Clinical Epigenetics
#500
of 1,436 outputs
Outputs of similar age
#78,067
of 279,607 outputs
Outputs of similar age from Clinical Epigenetics
#22
of 43 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 1,436 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,607 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.