↓ Skip to main content

Teriflunomide attenuates neuroinflammation-related neural damage in mice carrying human PLP1 mutations

Overview of attention for article published in Journal of Neuroinflammation, July 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Teriflunomide attenuates neuroinflammation-related neural damage in mice carrying human PLP1 mutations
Published in
Journal of Neuroinflammation, July 2018
DOI 10.1186/s12974-018-1228-z
Pubmed ID
Authors

Janos Groh, Michaela Hörner, Rudolf Martini

Abstract

Genetically caused neurological disorders of the central nervous system (CNS) are mostly characterized by poor or even fatal clinical outcome and few or no causative treatments are available. Often, these disorders are associated with low-grade, disease-promoting inflammation, another feature shared by progressive forms of multiple sclerosis (PMS). We previously generated two mouse lines carrying distinct mutations in the oligodendrocytic PLP1 gene that have initially been identified in patients diagnosed with MS. These mutations cause a loss of PLP function leading to a histopathological and clinical phenotype common to both PMS and genetic CNS disorders, like hereditary spastic paraplegias. Importantly, neuroinflammation promotes disease progression in these models, suggesting that pharmacological modulation of inflammation might ameliorate disease outcome. We applied teriflunomide, an approved medication for relapsing-remitting MS targeting activated T-lymphocytes, in the drinking water (10 mg/kg body weight/day). Experimental long-term treatment of PLP mutant mice was non-invasively monitored by longitudinal optical coherence tomography and by rotarod analysis. Immunomodulatory effects were subsequently analyzed by flow cytometry and immunohistochemistry and treatment effects regarding neural damage, and neurodegeneration were assessed by histology and immunohistochemistry. Preventive treatment with teriflunomide attenuated the increase in number of CD8+ cytotoxic effector T cells and fostered the proliferation of CD8+ CD122+ PD-1+ regulatory T cells in the CNS. This led to an amelioration of axonopathic features and neuron loss in the retinotectal system, also reflected by reduced thinning of the innermost retinal composite layer in longitudinal studies and ameliorated clinical outcome upon preventive long-term treatment. Treatment of immune-incompetent PLP mutants did not provide evidence for a direct, neuroprotective effect of the medication. When treatment was terminated, no rebound of neuroinflammation occurred and histopathological improvement was preserved for at least 75 days without treatment. After disease onset, teriflunomide halted ongoing axonal perturbation and enabled a recovery of dendritic arborization by surviving ganglion cells. However, neither neuron loss nor clinical features were ameliorated, likely due to already advanced neurodegeneration before treatment onset. We identify teriflunomide as a possible medication not only for PMS but also for inflammation-related genetic diseases of the nervous system for which causal treatment options are presently lacking.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 17%
Researcher 7 15%
Student > Doctoral Student 5 10%
Student > Bachelor 4 8%
Student > Master 4 8%
Other 5 10%
Unknown 15 31%
Readers by discipline Count As %
Medicine and Dentistry 11 23%
Neuroscience 9 19%
Biochemistry, Genetics and Molecular Biology 3 6%
Agricultural and Biological Sciences 3 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 3 6%
Unknown 17 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 April 2019.
All research outputs
#18,641,800
of 23,094,276 outputs
Outputs from Journal of Neuroinflammation
#2,089
of 2,662 outputs
Outputs of similar age
#253,191
of 327,912 outputs
Outputs of similar age from Journal of Neuroinflammation
#50
of 59 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,662 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,912 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.