↓ Skip to main content

DNMT1 regulates expression of MHC class I in post-mitotic neurons

Overview of attention for article published in Molecular Brain, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

news
1 news outlet
twitter
4 X users

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
DNMT1 regulates expression of MHC class I in post-mitotic neurons
Published in
Molecular Brain, July 2018
DOI 10.1186/s13041-018-0380-9
Pubmed ID
Authors

Julie Ry Gustafsson, Georgia Katsioudi, Matilda Degn, Patrick Ejlerskov, Shohreh Issazadeh-Navikas, Birgitte Rahbek Kornum

Abstract

Major Histocompability Complex I (MHC-I) molecules present cellularly derived peptides to the adaptive immune system. Generally MHC-I is not expressed on healthy post-mitotic neurons in the central nervous system, but it is known to increase upon immune activation such as viral infections and also during neurodegenerative processes. MHC-I expression is known to be regulated by the DNA methyltransferase DNMT1 in non-neuronal cells. Interestingly DNMT1 expression is high in neurons despite these being non-dividing. This suggests a role for DNMT1 in neurons beyond the classical re-methylation of DNA after cell division. We thus investigated whether DNMT1 regulates MHC-I in post-mitotic neurons. For this we used primary cultures of mouse cerebellar granule neurons (CGNs). Our results showed that knockdown of DNMT1 in CGNs caused upregulation of some, but not all subtypes of MHC-I genes. This effect was synergistically enhanced by subsequent IFNγ treatment. Overall MHC-I protein level was not affected by knockdown of DNMT1 in CGNs. Instead our results show that the relative MHC-I expression levels among the different MHC subtypes is regulated by DNMT1 activity. In conclusion, we show that while the mouse H2-D1/L alleles are suppressed in neurons by DNMT1 activity under normal circumstances, the H2-K1 allele is not. This finding is particularly important in two instances. One: in the context of CNS autoimmunity with epitope presentation by specific MHC-I subtypes where this allele specific regulation might become important; and two: in amyotropic lateral sclerosis (ALS) where H2-K but not H2-D protects motor neurons from ALS astrocyte-induced toxicity in a mouse model of ALS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 21%
Student > Ph. D. Student 7 21%
Student > Doctoral Student 4 12%
Student > Bachelor 3 9%
Student > Master 2 6%
Other 5 15%
Unknown 6 18%
Readers by discipline Count As %
Neuroscience 10 29%
Biochemistry, Genetics and Molecular Biology 8 24%
Medicine and Dentistry 3 9%
Nursing and Health Professions 1 3%
Agricultural and Biological Sciences 1 3%
Other 5 15%
Unknown 6 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 October 2018.
All research outputs
#2,770,246
of 23,577,654 outputs
Outputs from Molecular Brain
#111
of 1,143 outputs
Outputs of similar age
#57,091
of 328,857 outputs
Outputs of similar age from Molecular Brain
#2
of 18 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,143 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,857 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.