↓ Skip to main content

Multivariate genome-wide association analysis identifies novel and relevant variants associated with anterior cruciate ligament rupture risk in the dog model

Overview of attention for article published in BMC Genomic Data, June 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
6 X users
facebook
3 Facebook pages

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multivariate genome-wide association analysis identifies novel and relevant variants associated with anterior cruciate ligament rupture risk in the dog model
Published in
BMC Genomic Data, June 2018
DOI 10.1186/s12863-018-0626-7
Pubmed ID
Authors

Lauren A. Baker, Guilherme J. M. Rosa, Zhengling Hao, Alexander Piazza, Christopher Hoffman, Emily E. Binversie, Susannah J. Sample, Peter Muir

Abstract

Anterior cruciate ligament rupture (ACLR) is a debilitating and potentially life-changing condition in humans, as there is a high prevalence of early-onset osteoarthritis after injury. Identification of high-risk individuals before they become patients is important, as post-treatment lifetime burden of ACLR in the USA ranges from $7.6 to $17.7 billion annually. ACLR is a complex disease with multiple risk factors including genetic predisposition. Naturally occurring ACLR in the dog is an excellent model for human ACLR, as risk factors and disease characteristics in humans and dogs are similar. In a univariate genome-wide association study (GWAS) of 237 Labrador Retrievers, we identified 99 ACLR candidate loci. It is likely that additional variants remain to be identified. Joint analysis of multiple correlated phenotypes is an underutilized technique that increases statistical power, even when only one phenotype is associated with the trait. Proximal tibial morphology has been shown to affect ACLR risk in both humans and dogs. In the present study, tibial plateau angle (TPA) and relative tibial tuberosity width (rTTW) were measured on bilateral radiographs from purebred Labrador Retrievers that were recruited to our initial GWAS. We performed a multivariate genome wide association analysis of ACLR status, TPA, and rTTW. Our analysis identified 3 loci with moderate evidence of association that were not previously associated with ACLR. A locus on Chr1 associated with both ACLR and rTTW is located within ROR2, a gene important for cartilage and bone development. A locus on Chr4 associated with both ACLR and TPA resides within DOCK2, a gene that has been shown to promote immune cell migration and invasion in synovitis, an important predictor of ACLR. A third locus on Chr23 associated with only ACLR is located near a long non-coding RNA (lncRNA). LncRNA's are important for regulation of gene transcription and translation. These results did not overlap with our previous GWAS, which is reflective of the different methods used, and supports the need for further work. The results of the present study are highly relevant to ACLR pathogenesis, and identify potential drug targets for medical treatment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 16%
Student > Ph. D. Student 7 14%
Student > Master 6 12%
Other 5 10%
Researcher 3 6%
Other 5 10%
Unknown 15 31%
Readers by discipline Count As %
Medicine and Dentistry 12 24%
Veterinary Science and Veterinary Medicine 7 14%
Nursing and Health Professions 3 6%
Biochemistry, Genetics and Molecular Biology 2 4%
Agricultural and Biological Sciences 2 4%
Other 7 14%
Unknown 16 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 September 2018.
All research outputs
#7,000,448
of 25,385,509 outputs
Outputs from BMC Genomic Data
#233
of 1,204 outputs
Outputs of similar age
#113,163
of 342,601 outputs
Outputs of similar age from BMC Genomic Data
#8
of 24 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 1,204 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,601 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.