↓ Skip to main content

Diversity, evolution, and function of myriapod hemocyanins

Overview of attention for article published in BMC Ecology and Evolution, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (70th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
8 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Diversity, evolution, and function of myriapod hemocyanins
Published in
BMC Ecology and Evolution, July 2018
DOI 10.1186/s12862-018-1221-2
Pubmed ID
Authors

Samantha Scherbaum, Nadja Hellmann, Rosa Fernández, Christian Pick, Thorsten Burmester

Abstract

Hemocyanin transports O2 in the hemolymph of many arthropod species. Such respiratory proteins have long been considered unnecessary in Myriapoda. As a result, the presence of hemocyanin in Myriapoda has long been overlooked. We analyzed transcriptome and genome sequences from all major myriapod taxa - Chilopoda, Diplopoda, Symphyla, and Pauropoda - with the aim of identifying hemocyanin-like proteins. We investigated the genomes and transcriptomes of 56 myriapod species and identified 46 novel full-length hemocyanin subunit sequences in 20 species of Chilopoda, Diplopoda, and Symphyla, but not Pauropoda. We found in Cleidogona sp. (Diplopoda, Chordeumatida) a hemocyanin-like sequence with mutated copper-binding centers, which cannot bind O2. An RNA-seq approach showed markedly different hemocyanin mRNA levels from ~ 6 to 25,000 reads per kilobase per million reads. To evaluate the contribution of hemocyanin to O2 transport, we specifically studied the hemocyanin of the centipede Scolopendra dehaani. This species harbors two distinct hemocyanin subunits with low expression levels. We showed cooperative O2 binding in the S. dehaani hemolymph, indicating that hemocyanin supports O2 transport even at low concentration. Further, we demonstrated that hemocyanin is > 1500-fold more highly expressed in the fertilized egg than in the adult. Hemocyanin was most likely the respiratory protein in the myriapod stem-lineage, but multiple taxa may have independently lost hemocyanin and thus the ability of efficient O2 transport. In myriapods, hemocyanin is much more widespread than initially appreciated. Some myriapods express hemocyanin only at low levels, which are, nevertheless, sufficient for O2 supply. Notably, also in myriapods, a non-respiratory protein similar to insect storage hexamerins evolved from the hemocyanin.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 11%
Student > Master 2 7%
Student > Doctoral Student 1 4%
Lecturer 1 4%
Student > Ph. D. Student 1 4%
Other 3 11%
Unknown 16 59%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 19%
Biochemistry, Genetics and Molecular Biology 3 11%
Chemistry 2 7%
Social Sciences 1 4%
Environmental Science 1 4%
Other 0 0%
Unknown 15 56%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 August 2018.
All research outputs
#6,302,026
of 25,385,509 outputs
Outputs from BMC Ecology and Evolution
#1,372
of 3,714 outputs
Outputs of similar age
#100,771
of 340,861 outputs
Outputs of similar age from BMC Ecology and Evolution
#29
of 51 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,861 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.