↓ Skip to main content

N-Acetyl-glucosamine influences the biofilm formation of Escherichia coli

Overview of attention for article published in Gut Pathogens, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

blogs
1 blog
twitter
3 X users

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
N-Acetyl-glucosamine influences the biofilm formation of Escherichia coli
Published in
Gut Pathogens, June 2018
DOI 10.1186/s13099-018-0252-y
Pubmed ID
Authors

Jean-Félix Sicard, Philippe Vogeleer, Guillaume Le Bihan, Yaindrys Rodriguez Olivera, Francis Beaudry, Mario Jacques, Josée Harel

Abstract

The intestinal mucous layer is a physical barrier that limits the contact between bacteria and host epithelial cells. There is growing evidence that microbiota-produced metabolites can also be specifically sensed by gut pathogens as signals to induce or repress virulence genes. Many E. coli, including adherent and invasive (AIEC) strains, can form biofilm. This property can promote their intestinal colonization and resistance to immune mechanisms. We sought to evaluate the impact of mucus-derived sugars on biofilm formation of E. coli. We showed that the mucin sugar N-acetyl-glucosamine (NAG) can reduce biofilm formation of AIEC strain LF82. We demonstrated that the inactivation of the regulatory protein NagC, by addition of NAG or by mutation of nagC gene, reduced the biofilm formation of LF82 in static condition. Interestingly, real-time monitoring of biofilm formation of LF82 using microfluidic system showed that the mutation of nagC impairs the early process of biofilm development of LF82. Thus, NAG sensor NagC is involved in the early steps of biofilm formation of AIEC strain LF82 under both static and dynamic conditions. Its implication is partly due to the activation of type 1 fimbriae. NAG can also influence biofilm formation of other intestinal E. coli strains. This study highlights how catabolism can be involved in biofilm formation of E. coli. Mucus-derived sugars can influence virulence properties of pathogenic E. coli and this study will help us better understand the mechanisms used to prevent colonization of the intestinal mucosa by pathogens.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 32%
Student > Master 7 11%
Student > Bachelor 6 10%
Researcher 6 10%
Student > Doctoral Student 5 8%
Other 6 10%
Unknown 13 21%
Readers by discipline Count As %
Immunology and Microbiology 14 22%
Biochemistry, Genetics and Molecular Biology 11 17%
Agricultural and Biological Sciences 8 13%
Engineering 3 5%
Environmental Science 2 3%
Other 10 16%
Unknown 15 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 June 2023.
All research outputs
#3,961,704
of 24,093,053 outputs
Outputs from Gut Pathogens
#96
of 554 outputs
Outputs of similar age
#73,989
of 332,712 outputs
Outputs of similar age from Gut Pathogens
#2
of 14 outputs
Altmetric has tracked 24,093,053 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 554 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.7. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,712 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.