↓ Skip to main content

Complex kinetics and residual structure in the thermal unfolding of yeast triosephosphate isomerase

Overview of attention for article published in BMC Molecular and Cell Biology, September 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Complex kinetics and residual structure in the thermal unfolding of yeast triosephosphate isomerase
Published in
BMC Molecular and Cell Biology, September 2015
DOI 10.1186/s12858-015-0049-2
Pubmed ID
Authors

Ariana Labastida-Polito, Georgina Garza-Ramos, Menandro Camarillo-Cadena, Rafael A. Zubillaga, Andrés Hernández-Arana

Abstract

Saccharomyces cerevisiae triosephosphate isomerase (yTIM) is a dimeric protein that shows noncoincident unfolding and refolding transitions (hysteresis) in temperature scans, a phenomenon indicative of the slow forward and backward reactions of the native-unfolded process. Thermal unfolding scans suggest that no stable intermediates appear in the unfolding of yTIM. However, reported evidence points to the presence of residual structure in the denatured monomer at high temperature. Thermally denatured yTIM showed a clear trend towards the formation of aggregation-prone, β-strand-like residual structure when pH decreased from 8.0 to 6.0, even though thermal unfolding profiles retained a simple monophasic appearance regardless of pH. However, kinetic studies performed over a relatively wide temperature range revealed a complex unfolding mechanism comprising up to three observable phases, with largely different time constants, each accompanied by changes in secondary structure. Besides, a simple sequential mechanism is unlikely to explain the observed variation of amplitudes and rate constants with temperature. This kinetic complexity is, however, not linked to the appearance of residual structure. Furthermore, the rate constant for the main unfolding phase shows small, rather unvarying values in the pH region where denatured yTIM gradually acquires a β-strand-like conformation. It appears, therefore, that the residual structure has no influence on the kinetic stability of the native protein. However, the presence of residual structure is clearly associated with increased irreversibility. The slow temperature-induced unfolding of yeast TIM shows three kinetic phases. Rather than a simple sequential pathway, a complex mechanism involving off-pathway intermediates or even parallel pathways may be operating. β-strand-type residual structure, which appears below pH 8.0, is likely to be associated with increased irreversible aggregation of the unfolded protein. However, this denatured form apparently accelerates the refolding process.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 3 20%
Student > Bachelor 3 20%
Student > Ph. D. Student 2 13%
Professor 2 13%
Researcher 2 13%
Other 3 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 40%
Agricultural and Biological Sciences 3 20%
Chemistry 3 20%
Environmental Science 1 7%
Engineering 1 7%
Other 0 0%
Unknown 1 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 September 2015.
All research outputs
#22,756,649
of 25,371,288 outputs
Outputs from BMC Molecular and Cell Biology
#1,054
of 1,233 outputs
Outputs of similar age
#237,654
of 276,996 outputs
Outputs of similar age from BMC Molecular and Cell Biology
#13
of 17 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,233 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,996 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.