↓ Skip to main content

A computational framework for the prioritization of disease-gene candidates

Overview of attention for article published in BMC Genomics, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A computational framework for the prioritization of disease-gene candidates
Published in
BMC Genomics, August 2015
DOI 10.1186/1471-2164-16-s9-s2
Pubmed ID
Authors

Fiona Browne, Haiying Wang, Huiru Zheng

Abstract

The identification of genes and uncovering the role they play in diseases is an important and complex challenge. Genome-wide linkage and association studies have made advancements in identifying genetic variants that underpin human disease. An important challenge now is to identify meaningful disease-associated genes from a long list of candidate genes implicated by these analyses. The application of gene prioritization can enhance our understanding of disease mechanisms and aid in the discovery of drug targets. The integration of protein-protein interaction networks along with disease datasets and contextual information is an important tool in unraveling the molecular basis of diseases. In this paper we propose a computational pipeline for the prioritization of disease-gene candidates. Diverse heterogeneous data including: gene-expression, protein-protein interaction network, ontology-based similarity and topological measures and tissue-specific are integrated. The pipeline was applied to prioritize Alzheimer's Disease (AD) genes, whereby a list of 32 prioritized genes was generated. This approach correctly identified key AD susceptible genes: PSEN1 and TRAF1. Biological process enrichment analysis revealed the prioritized genes are modulated in AD pathogenesis including: regulation of neurogenesis and generation of neurons. Relatively high predictive performance (AUC: 0.70) was observed when classifying AD and normal gene expression profiles from individuals using leave-one-out cross validation. This work provides a foundation for future investigation of diverse heterogeneous data integration for disease-gene prioritization.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 54 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 18%
Student > Ph. D. Student 10 18%
Student > Master 8 15%
Student > Doctoral Student 4 7%
Student > Bachelor 4 7%
Other 7 13%
Unknown 12 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 20%
Computer Science 8 15%
Biochemistry, Genetics and Molecular Biology 7 13%
Neuroscience 6 11%
Medicine and Dentistry 5 9%
Other 6 11%
Unknown 12 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2015.
All research outputs
#13,955,130
of 22,826,360 outputs
Outputs from BMC Genomics
#5,349
of 10,654 outputs
Outputs of similar age
#132,717
of 266,077 outputs
Outputs of similar age from BMC Genomics
#138
of 251 outputs
Altmetric has tracked 22,826,360 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,654 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,077 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 251 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.