↓ Skip to main content

The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women

Overview of attention for article published in Clinical Epigenetics, September 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
10 tweeters

Readers on

mendeley
74 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women
Published in
Clinical Epigenetics, September 2015
DOI 10.1186/s13148-015-0126-9
Pubmed ID
Authors

Peter Arner, Indranil Sinha, Anders Thorell, Mikael Rydén, Karin Dahlman-Wright, Ingrid Dahlman

Abstract

Obesity is associated with changes in fat cell gene expression and metabolism. What drives these changes is not well understood. We aimed to explore fat cell epigenetics, i.e., DNA methylation, as one mediator of gene regulation, in obese women. The global DNA methylome for abdominal subcutaneous fat cells was compared between 15 obese case (BMI 41.4 ± 4.4 kg/m(2), mean ± SD) and 14 never-obese control women (BMI 25.2 ± 2.5 kg/m(2)). Global array-based transcriptome analysis was analyzed for subcutaneous white adipose tissue (WAT) from 11 obese and 9 never-obese women. Limma was used for statistical analysis. We identified 5529 differentially methylated DNA sites (DMS) for 2223 differentially expressed genes between obese cases and never-obese controls (false discovery rate <5 %). The 5529 DMS displayed a median difference in beta value of 0.09 (range 0.01 to 0.40) between groups. DMS were under-represented in CpG islands and in promoter regions, and over-represented in open sea-regions and gene bodies. The 2223 differentially expressed genes with DMS were over-represented in key fat cell pathways: 31 of 130 (25 %) genes linked to "adipogenesis" (adjusted P = 1.66 × 10(-11)), 31 of 163 (19 %) genes linked to "insulin signaling" (adjusted P = 1.91 × 10(-9)), and 18 of 67 (27 %) of genes linked to "lipolysis" (P = 6.1 × 10(-5)). In most cases, gene expression and DMS displayed reciprocal changes in obese women. Furthermore, among 99 candidate genes in genetic loci associated with body fat distribution in genome-wide association studies (GWAS); 22 genes displayed differential expression accompanied by DMS in obese versus never-obese women (P = 0.0002), supporting the notion that a significant proportion of gene loci linked to fat distribution are epigenetically regulated. Subcutaneous WAT from obese women is characterized by congruent changes in DNA methylation and expression of genes linked to generation, distribution, and metabolic function of fat cells. These alterations may contribute to obesity-associated metabolic disturbances such as insulin resistance in women.

Twitter Demographics

The data shown below were collected from the profiles of 10 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 1%
Unknown 73 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 27%
Researcher 12 16%
Student > Master 8 11%
Student > Bachelor 6 8%
Student > Doctoral Student 6 8%
Other 11 15%
Unknown 11 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 22 30%
Medicine and Dentistry 18 24%
Agricultural and Biological Sciences 12 16%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Computer Science 1 1%
Other 5 7%
Unknown 14 19%

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2015.
All research outputs
#2,960,684
of 13,449,710 outputs
Outputs from Clinical Epigenetics
#162
of 662 outputs
Outputs of similar age
#51,806
of 241,462 outputs
Outputs of similar age from Clinical Epigenetics
#12
of 27 outputs
Altmetric has tracked 13,449,710 research outputs across all sources so far. Compared to these this one has done well and is in the 77th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 662 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 241,462 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.