↓ Skip to main content

Chiral polymer modified nanoparticles selectively induce autophagy of cancer cells for tumor ablation

Overview of attention for article published in Journal of Nanobiotechnology, July 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chiral polymer modified nanoparticles selectively induce autophagy of cancer cells for tumor ablation
Published in
Journal of Nanobiotechnology, July 2018
DOI 10.1186/s12951-018-0383-9
Pubmed ID
Authors

Long Yuan, Fan Zhang, Xiaowei Qi, Yongjun Yang, Chang Yan, Jun Jiang, Jun Deng

Abstract

Autophagy regulation through exogenous materials has aroused intensive attention to develop treatment protocols according to diverse human diseases. However, to the best of our knowledge, few examples have been reported to selectively control autophagy process and ultimately achieve efficient therapeutic potential. In this study, monolayers of poly (acryloyl-L, D and racemic valine) (L-PAV-AuNPs, D-PAV-AuNPs and L/D-PAV-AuNPs) chiral molecules were anchored on the surfaces of gold nanoparticles (PAV-AuNPs), and the subsequent chirality-selective effects on autophagy activation were thoroughly studied. The cytotoxicity induced by PAV-AuNPs towards MDA-MB-231 cells (Breast cancer cells) was achieved mainly through autophagy and showed chirality-dependent, with D-PAV-AuNPs exhibiting high autophagy-inducing activity in vitro and in vivo. In contrast, the PAV-AuNPs exhibited autophagy inactivation for normal cells, e.g., 3T3 fibroblasts and HBL-100 cells. The chirality-selective autophagy activation effect in MDA-MB-231 cells was likely attributed to the chirality-variant ROS generation, cellular uptake and their continuous autophagy stimulus. Furthermore, the intratumoral injection of D-PAV-AuNPs could largely suppress the tumor growth but exhibit negligible toxicity in vivo. As the first exploration on stereospecific NPs for autophagy induction, this work not only substantiates that chiral polymer coated NPs can selective induce autophagy-specific in cancer cells and achieve a high tumor eradication efficiency in vivo, but also opens up a new direction in discovering unprecedented stereospecific nanoagents for autophagy-associated tumor treatment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 21%
Researcher 8 15%
Student > Master 4 8%
Student > Doctoral Student 4 8%
Lecturer 2 4%
Other 7 13%
Unknown 16 31%
Readers by discipline Count As %
Chemistry 12 23%
Engineering 5 10%
Biochemistry, Genetics and Molecular Biology 5 10%
Materials Science 4 8%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Other 6 12%
Unknown 17 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 July 2018.
All research outputs
#15,539,088
of 23,094,276 outputs
Outputs from Journal of Nanobiotechnology
#669
of 1,450 outputs
Outputs of similar age
#208,614
of 326,767 outputs
Outputs of similar age from Journal of Nanobiotechnology
#9
of 11 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,450 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,767 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.