↓ Skip to main content

Nucleated red blood cells impact DNA methylation and expression analyses of cord blood hematopoietic cells

Overview of attention for article published in Clinical Epigenetics, September 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
13 X users

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nucleated red blood cells impact DNA methylation and expression analyses of cord blood hematopoietic cells
Published in
Clinical Epigenetics, September 2015
DOI 10.1186/s13148-015-0129-6
Pubmed ID
Authors

Olivia M. de Goede, Hamid R. Razzaghian, E. Magda Price, Meaghan J. Jones, Michael S. Kobor, Wendy P. Robinson, Pascal M. Lavoie

Abstract

Genome-wide DNA methylation (DNAm) studies have proven extremely useful to understand human hematopoiesis. Due to their active DNA content, nucleated red blood cells (nRBCs) contribute to epigenetic and transcriptomic studies derived from whole cord blood. Genomic studies of cord blood hematopoietic cells isolated by fluorescence-activated cell sorting (FACS) may be significantly altered by heterotopic interactions with nRBCs during conventional cell sorting. We report that cord blood T cells, and to a lesser extent monocytes and B cells, physically engage with nRBCs during FACS. These heterotopic interactions resulted in significant cross-contamination of genome-wide epigenetic and transcriptomic data. Formal exclusion of erythroid lineage-specific markers yielded DNAm profiles (measured by the Illumina 450K array) of cord blood CD4 and CD8 T lymphocytes, B lymphocytes, natural killer (NK) cells, granulocytes, monocytes, and nRBCs that were more consistent with expected hematopoietic lineage relationships. Additionally, we identified eight highly differentially methylated CpG sites in nRBCs (false detection rate <5 %, |Δβ| >0.50) that can be used to detect nRBC contamination of purified hematopoietic cells or to assess the impact of nRBCs on whole cord blood DNAm profiles. Several of these erythroid markers are located in or near genes involved in erythropoiesis (ZFPM1, HDAC4) or immune function (MAP3K14, IFIT1B), reinforcing a possible immune regulatory role for nRBCs in early life. Heterotopic interactions between erythroid cells and white blood cells can result in contaminated cell populations if not properly excluded during cell sorting. Cord blood nRBCs have a distinct DNAm profile that can significantly skew epigenetic studies. Our findings have major implications for the design and interpretation of genome-wide epigenetic and transcriptomic studies using human cord blood.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 3%
Spain 1 2%
Denmark 1 2%
Canada 1 2%
Unknown 59 92%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 27%
Researcher 13 20%
Student > Master 9 14%
Student > Bachelor 3 5%
Student > Postgraduate 3 5%
Other 11 17%
Unknown 8 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 42%
Medicine and Dentistry 8 13%
Biochemistry, Genetics and Molecular Biology 6 9%
Neuroscience 2 3%
Nursing and Health Professions 1 2%
Other 6 9%
Unknown 14 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 September 2015.
All research outputs
#4,034,004
of 23,380,821 outputs
Outputs from Clinical Epigenetics
#266
of 1,292 outputs
Outputs of similar age
#51,495
of 269,046 outputs
Outputs of similar age from Clinical Epigenetics
#13
of 40 outputs
Altmetric has tracked 23,380,821 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,292 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.2. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 269,046 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.