↓ Skip to main content

Molecular musings in microbial ecology and evolution

Overview of attention for article published in Biology Direct, November 2011
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users
googleplus
1 Google+ user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
110 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular musings in microbial ecology and evolution
Published in
Biology Direct, November 2011
DOI 10.1186/1745-6150-6-58
Pubmed ID
Authors

Rebecca J Case, Yan Boucher

Abstract

A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology.The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured) organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured) organisms, without much knowledge of their physiology.The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT) made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution) and in the other to achieve its goals despite that phenomenon (ecology).The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough resolution to uncover what lies below the species level.The answers of the evolutionary microbiologist and microbial ecologist to these three questions illustrate differences in their theoretical frameworks. These differences mean that both fields can react quite distinctly to the same discovery, incorporating it with more or less difficulty in their scientific practice.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 110 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 5 5%
Germany 3 3%
United Kingdom 2 2%
Italy 1 <1%
France 1 <1%
Canada 1 <1%
Norway 1 <1%
Unknown 96 87%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 33 30%
Researcher 25 23%
Student > Master 12 11%
Professor 7 6%
Student > Bachelor 7 6%
Other 14 13%
Unknown 12 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 57 52%
Biochemistry, Genetics and Molecular Biology 11 10%
Environmental Science 8 7%
Medicine and Dentistry 3 3%
Immunology and Microbiology 2 2%
Other 13 12%
Unknown 16 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 March 2014.
All research outputs
#15,739,010
of 25,373,627 outputs
Outputs from Biology Direct
#340
of 537 outputs
Outputs of similar age
#100,101
of 154,848 outputs
Outputs of similar age from Biology Direct
#9
of 11 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 537 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.3. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 154,848 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.