↓ Skip to main content

Finite mixture clustering of human tissues with different levels of IGF-1 splice variants mRNA transcripts

Overview of attention for article published in BMC Bioinformatics, September 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Finite mixture clustering of human tissues with different levels of IGF-1 splice variants mRNA transcripts
Published in
BMC Bioinformatics, September 2015
DOI 10.1186/s12859-015-0689-7
Pubmed ID
Authors

Michele Pelosi, Marco Alfò, Francesca Martella, Elisa Pappalardo, Antonio Musarò

Abstract

This study addresses a recurrent biological problem, that is to define a formal clustering structure for a set of tissues on the basis of the relative abundance of multiple alternatively spliced isoforms mRNAs generated by the same gene. To this aim, we have used a model-based clustering approach, based on a finite mixture of multivariate Gaussian densities. However, given we had more technical replicates from the same tissue for each quantitative measurement, we also employed a finite mixture of linear mixed models, with tissue-specific random effects. A panel of human tissues was analysed through quantitative real-time PCR methods, to quantify the relative amount of mRNA encoding different IGF-1 alternative splicing variants. After an appropriate, preliminary, equalization of the quantitative data, we provided an estimate of the distribution of the observed concentrations for the different IGF-1 mRNA splice variants in the cohort of tissues by employing suitable kernel density estimators. We observed that the analysed IGF-1 mRNA splice variants were characterized by multimodal distributions, which could be interpreted as describing the presence of several sub-population, i.e. potential tissue clusters. In this context, a formal clustering approach based on a finite mixture model (FMM) with Gaussian components is proposed. Due to the presence of potential dependence between the technical replicates (originated by repeated quantitative measurements of the same mRNA splice isoform in the same tissue) we have also employed the finite mixture of linear mixed models (FMLMM), which allowed to take into account this kind of within-tissue dependence. The FMM and the FMLMM provided a convenient yet formal setting for a model-based clustering of the human tissues in sub-populations, characterized by homogeneous values of concentrations of the mRNAs for one or multiple IGF-1 alternative splicing isoforms. The proposed approaches can be applied to any cohort of tissues expressing several alternatively spliced mRNAs generated by the same gene, and can overcome the limitations of clustering methods based on simple comparisons between splice isoform expression levels.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 42%
Student > Ph. D. Student 3 25%
Professor > Associate Professor 1 8%
Student > Master 1 8%
Unknown 2 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 25%
Agricultural and Biological Sciences 3 25%
Computer Science 2 17%
Medicine and Dentistry 1 8%
Neuroscience 1 8%
Other 0 0%
Unknown 2 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 September 2015.
All research outputs
#18,168,008
of 23,339,727 outputs
Outputs from BMC Bioinformatics
#6,064
of 7,387 outputs
Outputs of similar age
#182,824
of 269,959 outputs
Outputs of similar age from BMC Bioinformatics
#102
of 128 outputs
Altmetric has tracked 23,339,727 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,387 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 269,959 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 128 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.