↓ Skip to main content

Radix Scrophulariae extracts (harpagoside) suppresses hypoxia-induced microglial activation and neurotoxicity

Overview of attention for article published in BMC Complementary Medicine and Therapies, September 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Radix Scrophulariae extracts (harpagoside) suppresses hypoxia-induced microglial activation and neurotoxicity
Published in
BMC Complementary Medicine and Therapies, September 2015
DOI 10.1186/s12906-015-0842-x
Pubmed ID
Authors

Shiow-Yunn Sheu, Yi-Wen Hong, Jui-Sheng Sun, Man-Hai Liu, Ching-Yun Chen, Cherng-Jyh Ke

Abstract

Hypoxia could lead to microglia activation and inflammatory mediators' overproduction. These inflammatory molecules could amplify the neuroinflammatory process and exacerbate neuronal injury. The aim of this study is to find out whether harpagoside could reduce hypoxia-induced microglia activation. In this study, primary microglia cells harvested from neonatal ICR mice were activated by exposure to hypoxia (1 % O2 for 3 h). Harpagoside had been shown to be no cytotoxicity on microglia cells by MTT assay. The scavenger effect of harpagoside on hypoxia-enhanced microglial cells proliferation, associated inflammatory genes expression (COX-II, IL-1β and IL-6 genes) and NO synthesis were also examined. Hypoxia enhances active proliferation of microglial cells, while harpagoside can scavenge this effect. We find that harpagoside could scavenge hypoxia-enhanced inflammatory genes expression (COX-2, IL-1β and IL-6 genes) and NO synthesis of microglial cells. Under 3 h' hypoxic stimulation, the nuclear contents of p65 and hypoxia inducible factor-1α (HIF-1α) significantly increase, while the cytosol IκB-α content decreases; these effects can be reversed by 1 h's pre-incubation of 10(-8) M harpagoside. Harpagoside could decrease IκB-α protein phosphorylation and inhibit p65 protein translocation from the cytosol to the nucleus, thus suppress NF-κB activation and reduce the HIF-1α generation. These results suggested that the anti-inflammatory mechanism of harpagoside might be associated with the NF-κB signaling pathway. Harpagoside protect against hypoxia-induced toxicity on microglial cells through HIF-α pathway.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 17%
Student > Ph. D. Student 3 13%
Lecturer > Senior Lecturer 2 8%
Student > Master 2 8%
Researcher 2 8%
Other 3 13%
Unknown 8 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 25%
Pharmacology, Toxicology and Pharmaceutical Science 3 13%
Medicine and Dentistry 2 8%
Biochemistry, Genetics and Molecular Biology 1 4%
Nursing and Health Professions 1 4%
Other 3 13%
Unknown 8 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 September 2015.
All research outputs
#20,291,881
of 22,828,180 outputs
Outputs from BMC Complementary Medicine and Therapies
#2,978
of 3,631 outputs
Outputs of similar age
#225,531
of 268,597 outputs
Outputs of similar age from BMC Complementary Medicine and Therapies
#71
of 86 outputs
Altmetric has tracked 22,828,180 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,631 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,597 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 86 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.