↓ Skip to main content

Predictive value of the pendulum test for assessing knee extensor spasticity

Overview of attention for article published in Journal of NeuroEngineering and Rehabilitation, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Predictive value of the pendulum test for assessing knee extensor spasticity
Published in
Journal of NeuroEngineering and Rehabilitation, July 2018
DOI 10.1186/s12984-018-0411-x
Pubmed ID
Authors

Alyssa Whelan, Andrew Sexton, Melony Jones, Colleen O’Connell, Chris A. McGibbon

Abstract

The pendulum test is commonly used to quantify knee extensor spasticity, but it is currently unknown to what extent common pendulum test metrics can detect spasticity in patients with neurological injury or disease, and if the presence of flexor spasticity influences the test outcomes. A retrospective analysis was conducted on 131 knees, from 93 patients, across four different patient cohorts. Clinical data included Modified Ashworth Scale (MAS) scores for knee extensors and flexors, and years since diagnosis. BioTone™ measures included extensor strength, passive and active range of motion, and pendulum tests of most affected or both knees. Pendulum test metrics included the relaxation index (RI), 1st flexion amplitude (F1amp) and plateau angle (Plat), where RI=F1amp/Plat. Two-way ANOVA tests were used to determine if pendulum test metrics were influenced by the degree of knee flexor spasticity graded by the MAS, and ANCOVA was used to test for confounding effects of age, years since injury, strength and range of motion (ROM). In order to identify the best pendulum test metrics, Receiver Operator Characteristic analysis and logistic regression (LR) analysis were used to classify knees by spasticity status (none or any) and severity (low/moderate or high/severe). Pendulum test metrics for knee extensors were not influenced by degree of flexor spasticity, age, years since injury, strength or ROM of the limb. RI, F1amp and Plat were > 70% accurate in classifying knees by presence of clinical spasticity (from the MAS), but were less accurate (< 70%) for grading spasticity level. The best classification accuracy was obtained using F1amp and Plat independently in the model rather than using RI alone. We conclude that the pendulum test has good predictive value for detecting the presence of extensor spasticity, independent of the existence of flexor spasticity. However, the ability to grade spasticity level as measured by MAS using the RI and/or F1amp may be limited. Further study is warranted to explore if the pendulum test is suitable for quantifying more severe spasticity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 11 21%
Researcher 11 21%
Student > Master 8 15%
Student > Ph. D. Student 4 8%
Student > Postgraduate 3 6%
Other 4 8%
Unknown 12 23%
Readers by discipline Count As %
Nursing and Health Professions 13 25%
Medicine and Dentistry 9 17%
Engineering 6 11%
Neuroscience 3 6%
Psychology 2 4%
Other 4 8%
Unknown 16 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 August 2018.
All research outputs
#15,014,589
of 23,096,849 outputs
Outputs from Journal of NeuroEngineering and Rehabilitation
#796
of 1,294 outputs
Outputs of similar age
#197,946
of 329,171 outputs
Outputs of similar age from Journal of NeuroEngineering and Rehabilitation
#19
of 28 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,294 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,171 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.