↓ Skip to main content

Aryl hydrocarbon receptor-microRNA-212/132 axis in human breast cancer suppresses metastasis by targeting SOX4

Overview of attention for article published in Molecular Cancer, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
71 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aryl hydrocarbon receptor-microRNA-212/132 axis in human breast cancer suppresses metastasis by targeting SOX4
Published in
Molecular Cancer, September 2015
DOI 10.1186/s12943-015-0443-9
Pubmed ID
Authors

Hamza Hanieh

Abstract

MicroRNAs (miRNAs) are a class of short non-coding RNAs that pave a new avenue for understanding immune responses and cancer progression. Although the miRNAs are involved in breast cancer development, their axis with the transcription factors that show therapeutic potential in breast cancer is largely unknown. Previous studies showed anti-metastatic roles of agonist-activated aryl hydrocarbon receptor (Ahr) in various breast cancer cell lines. Recently, we demonstrated that agonist-activated Ahr induced a highly conserved miRNA cluster, named miR-212/132, in murine cellular immune compartment. Therefore, current study was performed to examine if this miRNA cluster mediates the anti-metastatic properties of Ahr agonists. The expression of miR-212/132 cluster and coding genes were examined by real-time PCR, and the protein levels were detected by western blot. The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3'-diindolylmethane (DIM) were used to activate Ahr in MDA-MB-231 and T47D breast cancer cells. Chromatin immunoprecipitation (ChIP) assay was used to identify the binding site(s) for Ahr on miR-212/132 promoter. For prediction of potentially target gene of the miRNA cluster, bioinformatics analysis was carried out, and to test targeting, luciferase activity was quantified. Besides, biological effects of Ahr-miR-212/132 axis were examined in vitro by cell migration, expansion and invasion, and examined in vivo by orthotopic model of spontaneous metastasis. The miR-212/132 cluster was transcriptionally activated in MDA-MB-231 and T47D cells by TCDD and DIM, and this activation was regulated by Ahr. A reciprocal correlation was identified between Ahr agonists-induced miR-212/132 and the pro-metastatic SRY-related HMG-box4 (SOX4), and a new specific binding sites for miR-212/132 were identified on the untranslated region (3'UTR) of SOX4. Interestingly, miR-212/132 over-expression showed direct anti-migration, anti-expansion and anti-invasion properties, and an inhibition of the miRNA cluster mitigated the anti-invasive properties of TCDD and DIM. Further in vivo studies demonstrated that the Ahr-miR-212/132-SOX4 module was induced by Ahr activation. Taken together, the findings provide the first evidences of the synergistic anti-metastatic properties of miR-212/132 cluster through suppression of SOX4. Also, current study suggest a new miRNA-based mechanism elucidating the anti-metastatic properties of Ahr agonists, suggesting possibility of using miR-212/132 to control metastasis in breast cancer patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Italy 1 2%
Austria 1 2%
Canada 1 2%
Argentina 1 2%
Romania 1 2%
Japan 1 2%
Unknown 37 86%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 26%
Student > Ph. D. Student 10 23%
Researcher 6 14%
Student > Doctoral Student 2 5%
Professor 2 5%
Other 2 5%
Unknown 10 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 23%
Agricultural and Biological Sciences 8 19%
Medicine and Dentistry 6 14%
Pharmacology, Toxicology and Pharmaceutical Science 5 12%
Arts and Humanities 1 2%
Other 3 7%
Unknown 10 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2015.
All research outputs
#14,238,195
of 22,828,180 outputs
Outputs from Molecular Cancer
#902
of 1,721 outputs
Outputs of similar age
#140,735
of 272,396 outputs
Outputs of similar age from Molecular Cancer
#15
of 34 outputs
Altmetric has tracked 22,828,180 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,721 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 272,396 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.