↓ Skip to main content

Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal cancer by epigenetically suppressing autophagy

Overview of attention for article published in Journal of Hematology & Oncology, July 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
65 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal cancer by epigenetically suppressing autophagy
Published in
Journal of Hematology & Oncology, July 2018
DOI 10.1186/s13045-018-0638-9
Pubmed ID
Authors

Tong Shen, Ling-Dong Cai, Yu-Hong Liu, Shi Li, Wen-Juan Gan, Xiu-Ming Li, Jing-Ru Wang, Peng-Da Guo, Qun Zhou, Xing-Xing Lu, Li-Na Sun, Jian-Ming Li

Abstract

Ubiquitination is a basic post-translational modification for cellular homeostasis, and members of the conjugating enzyme (E2) family are the key components of the ubiquitin-proteasome system. However, the role of E2 family in colorectal cancer (CRC) is largely unknown. Our study aimed to investigate the role of Ube2v1, one of the ubiquitin-conjugating E2 enzyme variant proteins (Ube2v) but without the conserved cysteine residue required for the catalytic activity of E2s, in CRC. Immunohistochemistry and real-time RT-PCR were used to study the expressions of Ube2v1 at protein and mRNA levels in CRC, respectively. Western blotting and immunofluorescence, transmission electron microscopy, and in vivo rescue experiments were used to study the functional effects of Ube2v1 on autophagy and EMT program. Quantitative mass spectrometry, immunoprecipitation, ubiquitination assay, western blotting, and real-time RT-PCR were used to analyze the effects of Ube2v1 on histone H4 lysine 16 acetylation, interaction with Sirt1, ubiquitination of Sirt1, and autophagy-related gene expression. Ube2v1 was elevated in CRC samples, and its increased expression was correlated with poorer survival of CRC patients. Ube2v1 promoted migration and invasion of CRC cells in vitro and tumor growth and metastasis of CRC cells in vivo. Interestingly, Ube2v1suppressed autophagy program and promoted epithelial mesenchymal transition (EMT) and metastasis of CRC cells in an autophagy-dependent pattern in vitro and in vivo. Moreover, both rapamycin and trehalose attenuated the enhanced Ube2v1-mediated lung metastasis by inducing the autophagy pathway in an orthotropic mouse xenograft model of lung metastasis. Mechanistically, Ube2v1 promoted Ubc13-mediated ubiquitination and degradation of Sirt1 and inhibited histone H4 lysine 16 acetylation, and finally epigenetically suppressed autophagy gene expression in CRC. Our study functionally links Ube2v1, an E2 member in the ubiquitin-proteasome system, to autophagy program, thereby shedding light on developing Ube2v1 targeted therapy for CRC patients.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 17%
Student > Master 5 11%
Student > Doctoral Student 4 9%
Researcher 4 9%
Student > Postgraduate 3 6%
Other 7 15%
Unknown 16 34%
Readers by discipline Count As %
Medicine and Dentistry 7 15%
Biochemistry, Genetics and Molecular Biology 6 13%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Immunology and Microbiology 3 6%
Agricultural and Biological Sciences 2 4%
Other 8 17%
Unknown 18 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 July 2018.
All research outputs
#20,527,576
of 23,096,849 outputs
Outputs from Journal of Hematology & Oncology
#1,045
of 1,200 outputs
Outputs of similar age
#260,121
of 296,625 outputs
Outputs of similar age from Journal of Hematology & Oncology
#22
of 23 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,200 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 296,625 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.