↓ Skip to main content

The effect of iron-fortified complementary food and intermittent preventive treatment of malaria on anaemia in 12- to 36-month-old children: a cluster-randomised controlled trial

Overview of attention for article published in Malaria Journal, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
111 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The effect of iron-fortified complementary food and intermittent preventive treatment of malaria on anaemia in 12- to 36-month-old children: a cluster-randomised controlled trial
Published in
Malaria Journal, September 2015
DOI 10.1186/s12936-015-0872-3
Pubmed ID
Authors

Dominik Glinz, Richard F. Hurrell, Mamadou Ouattara, Michael B. Zimmermann, Gary M. Brittenham, Lukas G. Adiossan, Aurélie A. Righetti, Burkhardt Seifert, Victorine G. Diakité, Jürg Utzinger, Eliézer K. N’Goran, Rita Wegmüller

Abstract

Iron deficiency (ID) and malaria co-exist in tropical regions and both contribute to high rates of anaemia in young children. It is unclear whether iron fortification combined with intermittent preventive treatment (IPT) of malaria would be an efficacious strategy for reducing anaemia in young children. A 9-month cluster-randomised, single-blinded, placebo-controlled intervention trial was carried out in children aged 12-36 months in south-central Côte d'Ivoire, an area of intense and perennial malaria transmission. The study groups were: group 1: normal diet and IPT-placebo (n = 125); group 2: consumption of porridge, an iron-fortified complementary food (CF) with optimised composition providing 2 mg iron as NaFeEDTA and 3.8 mg iron as ferrous fumarate 6 days per week (CF-FeFum) and IPT-placebo (n = 126); group 3: IPT of malaria at 3-month intervals, using sulfadoxine-pyrimethamine and amodiaquine and no dietary intervention (n = 127); group 4: both CF-FeFum and IPT (n = 124); and group 5: consumption of porridge, an iron-fortified CF with the composition currently on the Ivorian market providing 2 mg iron as NaFeEDTA and 3.8 mg iron as ferric pyrophosphate 6 days per week (CF-FePP) and IPT-placebo (n = 127). The primary outcome was haemoglobin (Hb) concentration. Linear and logistic regression mixed-effect models were used for the comparison of the five study groups, and a 2 × 2 factorial analysis was used to assess treatment interactions of CF-FeFum and IPT (study groups 1-4). After 9 months, the Hb concentration increased in all groups to a similar extent with no statistically significant difference between groups. In the 2 × 2 factorial analysis after 9 months, no treatment interaction was found on Hb (P = 0.89). The adjusted differences in Hb were 0.24 g/dl (95 % CI -0.10 to 0.59; P = 0.16) in children receiving IPT and -0.08 g/dl (95 % CI -0.42 to 0.26; P = 0.65) in children receiving CF-FeFum. At baseline, anaemia (Hb <11.0 g/dl) was 82.1 %. After 9 months, IPT decreased the odds of anaemia (odds ratio [OR], 0.46 [95 % CI 0.23-0.91]; P = 0.023), whereas iron-fortified CF did not (OR, 0.85 [95 % CI 0.43-1.68]; P = 0.68), although ID (plasma ferritin <30 μg/l) was decreased markedly in children receiving iron fortified CF (OR, 0.19 [95 % CI 0.09-0.40]; P < 0.001). IPT alone only modestly decreased anaemia, but neither IPT nor iron fortified CF significantly improved Hb concentration after 9 months. Additionally, IPT did not augment the effect of the iron fortified CF. CF fortified with highly bioavailable iron improved iron status but not Hb concentration, despite three-monthly IPT of malaria. Thus, further research is necessary to develop effective combination strategies to prevent and treat anaemia in malaria endemic regions. http://www.clinicaltrials.gov ; identifier NCT01634945; registered on July 3, 2012.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 111 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Unknown 110 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 23 21%
Student > Bachelor 12 11%
Researcher 11 10%
Other 8 7%
Student > Ph. D. Student 7 6%
Other 13 12%
Unknown 37 33%
Readers by discipline Count As %
Medicine and Dentistry 22 20%
Nursing and Health Professions 11 10%
Agricultural and Biological Sciences 10 9%
Social Sciences 6 5%
Biochemistry, Genetics and Molecular Biology 4 4%
Other 13 12%
Unknown 45 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 September 2015.
All research outputs
#14,825,310
of 22,828,180 outputs
Outputs from Malaria Journal
#4,236
of 5,569 outputs
Outputs of similar age
#150,256
of 272,396 outputs
Outputs of similar age from Malaria Journal
#99
of 136 outputs
Altmetric has tracked 22,828,180 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,569 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 272,396 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 136 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.