↓ Skip to main content

Spontaneous phenotypic suppression of GacA-defective Vibrio fischeri is achieved via mutation of csrA and ihfA

Overview of attention for article published in BMC Microbiology, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spontaneous phenotypic suppression of GacA-defective Vibrio fischeri is achieved via mutation of csrA and ihfA
Published in
BMC Microbiology, September 2015
DOI 10.1186/s12866-015-0509-2
Pubmed ID
Authors

Randi L. Foxall, Alicia E. Ballok, Ashley Avitabile, Cheryl A. Whistler

Abstract

Symbiosis defective GacA-mutant derivatives of Vibrio fischeri are growth impaired thereby creating a selective advantage for growth-enhanced spontaneous suppressors. Suppressors were isolated and characterized for effects of the mutations on gacA-mutant defects of growth, siderophore activity and luminescence. The mutations were identified by targeted and whole genome sequencing. Most mutations that restored multiple phenotypes were non-null mutations that mapped to conserved domains in or altered expression of CsrA, a post-transcriptional regulator that mediates GacA effects in a number of bacterial species. These represent an array of unique mutations compared to those that have been described previously. Different substitutions at the same amino acid residue were identified allowing comparisons of effects such as at the R6 residue, which conferred relative differences in luminescence and siderophore levels. The screen revealed residues not previously identified as critical for function including a single native alanine. Most csrA mutations enhanced luminescence more than siderophore activity, which was especially evident for mutations predicted to reduce the amount of CsrA. Although CsrA mutations compensate for many known GacA mutant defects, not all CsrA suppressors restore symbiotic colonization. Phenotypes of a suppressor allele of ihfA that encodes one subunit of the integration host factor (IHF) heteroduplex indicated the protein represses siderophore and activates luminescence in a GacA-independent manner. In addition to its established role in regulation of central metabolism, the CsrA regulator represses luminescence and siderophore as an intermediate of the GacA regulatory hierachy. Siderophore regulation was less sensitive to stoichiometry of CsrA consistent with higher affinity for the targets of this trait. The lack of CsrA null-mutant recovery implied these mutations do not enhance fitness of gacA mutants and alluded to this gene being conditionally essential. This study also suggests a role for IHF in the GacA-CsrB-CsrA regulatory cascade by potentially assisting with the binding of repressors of siderohphore and activators of luminescence. As many phosphorelay proteins reduce fitness when mutated, the documented instability used in this screen also highlights a potentially universal and underappreciated problem that, if not identified and strategically avoided, could introduce confounding variability during experimental study of these regulatory pathways.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 3 14%
Student > Master 3 14%
Professor > Associate Professor 3 14%
Researcher 3 14%
Student > Ph. D. Student 2 10%
Other 5 24%
Unknown 2 10%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 29%
Agricultural and Biological Sciences 5 24%
Chemistry 2 10%
Immunology and Microbiology 2 10%
Environmental Science 1 5%
Other 3 14%
Unknown 2 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 September 2015.
All research outputs
#13,901,936
of 23,577,654 outputs
Outputs from BMC Microbiology
#1,296
of 3,260 outputs
Outputs of similar age
#117,564
of 246,287 outputs
Outputs of similar age from BMC Microbiology
#25
of 75 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,260 research outputs from this source. They receive a mean Attention Score of 4.2. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 246,287 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 75 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.