↓ Skip to main content

Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean (Glycine max) reveals a potential role for ubiquitination in host immunity against soybean cyst nematode

Overview of attention for article published in BMC Plant Biology, July 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean (Glycine max) reveals a potential role for ubiquitination in host immunity against soybean cyst nematode
Published in
BMC Plant Biology, July 2018
DOI 10.1186/s12870-018-1365-7
Pubmed ID
Authors

Chunyu Zhang, Li Song, Mani Kant Choudhary, Bangjun Zhou, Guangchao Sun, Kyle Broderick, Loren Giesler, Lirong Zeng

Abstract

Ubiquitination is a major post-translational protein modification that regulates essentially all cellular and physiological pathways in eukaryotes. The ubiquitination process typically involves three distinct classes of enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3). To date, a comprehensive identification and analysis of core components comprising of the whole soybean (Glycine max) ubiquitin system (UBS) has not been reported. We performed a systematic, genome-wide analysis of genes that encode core members of the soybean UBS in this study. A total of 1431 genes were identified with high confidence to encode putative soybean UBS components, including 4 genes encoding E1s, 71 genes that encode the E2s, and 1356 genes encoding the E3-related components. Among the E3-encoding genes, 760 encode RING-type E3s, 124 encode U-box domain-containing E3s, and 472 encode F-box proteins. To find out whether the identified soybean UBS genes encode active enzymes, a set of genes were randomly selected and the enzymatic activities of their recombinant proteins were tested. Thioester assays indicated proteins encoded by the soybean E1 gene GmUBA1 and the majority of selected E2 genes are active E1 or E2 enzymes, respectively. Meanwhile, most of the purified RING and U-box domain-containing proteins displayed E3 activity in the in vitro ubiquitination assay. In addition, 1034 of the identified soybean UBS genes were found to express in at least one of 14 soybean tissues examined and the transcript level of 338 soybean USB genes were significantly changed after abiotic or biotic (Fusarium oxysporum and Rhizobium strains) stress treatment. Finally, the expression level of a large number of the identified soybean UBS-related genes was found significantly altered after soybean cyst nematode (SCN) treatment, suggesting the soybean UBS potentially plays an important role in soybean immunity against SCN. Our findings indicate the presence of a large and diverse number of core UBS proteins in the soybean genome, which suggests that target-specific modification by ubiquitin is a complex and important part of cellular and physiological regulation in soybean. We also revealed certain members of the soybean UBS may be involved in immunity against soybean cyst nematode (SCN). This study sets up an essential foundation for further functional characterization of the soybean UBS in various physiological processes, such as host immunity against SCN.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 19%
Student > Doctoral Student 4 15%
Student > Bachelor 2 8%
Student > Ph. D. Student 2 8%
Student > Master 2 8%
Other 3 12%
Unknown 8 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 27%
Biochemistry, Genetics and Molecular Biology 6 23%
Unspecified 1 4%
Immunology and Microbiology 1 4%
Medicine and Dentistry 1 4%
Other 0 0%
Unknown 10 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 July 2018.
All research outputs
#6,448,853
of 23,881,329 outputs
Outputs from BMC Plant Biology
#484
of 3,322 outputs
Outputs of similar age
#107,687
of 330,915 outputs
Outputs of similar age from BMC Plant Biology
#4
of 55 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 3,322 research outputs from this source. They receive a mean Attention Score of 3.0. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,915 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.