↓ Skip to main content

High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, September 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
85 Dimensions

Readers on

mendeley
99 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1
Published in
Biotechnology for Biofuels and Bioproducts, September 2015
DOI 10.1186/s13068-015-0336-6
Pubmed ID
Authors

Sukhyeong Cho, Taeyeon Kim, Han Min Woo, Yunje Kim, Jinwon Lee, Youngsoon Um

Abstract

2,3-Butanediol (2,3-BDO) is a promising bio-based chemical because of its wide industrial applications. Previous studies on microbial production of 2,3-BDO has focused on sugar fermentation. Alternatively, biodiesel-derived crude glycerol can be used as a cheap resource for 2,3-BDO production; however, a considerable formation of 1,3-propanediol (1,3-PDO) and low concentration, productivity, and yield of 2,3-BDO from glycerol fermentation are limitations. Here, we report a high production of 2,3-BDO from crude glycerol using the engineered Klebsiella oxytoca M3 in which pduC (encoding glycerol dehydratase large subunit) and ldhA (encoding lactate dehydrogenase) were deleted to reduce the formation of 1,3-PDO and lactic acid. In fed-batch fermentation with the parent strain K. oxytoca M1, crude glycerol was more effective than pure glycerol as a carbon source in 2,3-BDO production (59.4 vs. 73.8 g/L) and by-product reduction (1,3-PDO, 8.9 vs. 3.7 g/L; lactic acid, 18.6 vs. 9.8 g/L). When the double mutant was used in fed-batch fermentation with pure glycerol, cell growth and glycerol consumption were significantly enhanced and 2,3-BDO production was 1.9-fold higher than that of the parent strain (59.4 vs. 115.0 g/L) with 6.9 g/L of 1,3-PDO and a small amount of lactic acid (0.7 g/L). Notably, when crude glycerol was supplied, the double mutant showed 1,3-PDO-free 2,3-BDO production with high concentration (131.5 g/L), productivity (0.84 g/L/h), and yield (0.44 g/g crude glycerol). This result is the highest 2,3-BDO production from glycerol fermentation to date. 2,3-BDO production from glycerol was dramatically enhanced by disruption of the pduC and ldhA genes in K. oxytoca M1 and 1,3-PDO-free 2,3-BDO production was achieved by using the double mutant and crude glycerol. 2,3-BDO production obtained in this study is comparable to 2,3-BDO production from sugar fermentation, demonstrating the feasibility of economic industrial 2,3-BDO production using crude glycerol.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 99 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 1%
Unknown 98 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 25 25%
Student > Master 21 21%
Student > Ph. D. Student 15 15%
Student > Doctoral Student 7 7%
Professor 5 5%
Other 6 6%
Unknown 20 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 21 21%
Chemical Engineering 13 13%
Engineering 10 10%
Agricultural and Biological Sciences 9 9%
Chemistry 5 5%
Other 15 15%
Unknown 26 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 September 2015.
All research outputs
#20,656,161
of 25,374,647 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#1,285
of 1,578 outputs
Outputs of similar age
#206,029
of 281,201 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#33
of 43 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 281,201 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.