↓ Skip to main content

Polymorphism in drug resistance genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium falciparum in some states of India

Overview of attention for article published in Parasites & Vectors, September 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Polymorphism in drug resistance genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium falciparum in some states of India
Published in
Parasites & Vectors, September 2015
DOI 10.1186/s13071-015-1080-2
Pubmed ID
Authors

Divya Sharma, Manila Lather, Prashant K. Mallick, Tridibes Adak, Amita S. Dang, Neena Valecha, Om P. Singh

Abstract

Sulfadoxine-pyrimethamine (SP) combination drug is currently being used in India for the treatment of Plasmodium falciparum as partner drug in artemisinin-based combination therapy (ACT). Resistance to sulfadoxine and pyrimethamine in P. falciparum is linked with mutations in dihydropteroate synthase (pfdhps) and dihydrofolate reductase (pfdhfr) genes respectively. This study was undertaken to estimate the prevalence of such mutations in pfdhfr and pfdhps genes in four states of India. Plasmodium falciparum isolates were collected from two states of India with high malaria incidence i.e., Jharkhand and Odisha and two states with low malaria incidence i.e., Andhra Pradesh and Uttar Pradesh between years 2006 to 2012. Part of sulfadoxine-pyrimethamine (SP) drug resistance genes, pfdhfr and pfdhps were PCR-amplified, sequenced and analyzed. A total of 217 confirmed P. falciparum isolates were sequenced for both Pfdhfr and pfdhps gene. Two pfdhfr mutations 59R and 108N were most common mutations prevalent in all localities in 77 % of isolates. Additionally, I164L was found in Odisha and Jharkhand only (4/70 and 8/84, respectively). Another mutation 51I was found in Odisha only (3/70). The pfdhps mutations 436A, 437G, 540E and 581G were found in Jharkhand and Odisha only in 13, 26, 14 and 13 % isolates respectively, and was absent in Uttar Pradesh and Andhra Pradesh. Combined together for pfdhps and pfdhfr locus, triple, quadruple, quintuple and sextuple mutations were present in Jharkhand and Odisha while absent in Uttar Pradesh and Andhra Pradesh. While only double mutants of pfdhfr was present in low transmission area (Uttar Pradesh and Andhra Pradesh) with total absence of pfdhps mutants, up to sextuple mutations were present in high transmission areas (Odisha and Jharkhand) for both the genes combined. Presence of multiple mutations in pfdhfr and pfdhps genes linked to SP resistance in high transmission area may lead to fixation of multiple mutations in presence of high drug pressure and high recombination rate.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 55 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 20%
Student > Ph. D. Student 10 18%
Student > Bachelor 9 16%
Student > Doctoral Student 6 11%
Researcher 3 5%
Other 9 16%
Unknown 8 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 32%
Agricultural and Biological Sciences 9 16%
Medicine and Dentistry 7 13%
Immunology and Microbiology 4 7%
Psychology 2 4%
Other 5 9%
Unknown 11 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2015.
All research outputs
#18,426,826
of 22,828,180 outputs
Outputs from Parasites & Vectors
#4,227
of 5,463 outputs
Outputs of similar age
#196,003
of 272,396 outputs
Outputs of similar age from Parasites & Vectors
#96
of 146 outputs
Altmetric has tracked 22,828,180 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,463 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 272,396 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 146 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.