↓ Skip to main content

Group-based variant calling leveraging next-generation supercomputing for large-scale whole-genome sequencing studies

Overview of attention for article published in BMC Bioinformatics, September 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
58 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Group-based variant calling leveraging next-generation supercomputing for large-scale whole-genome sequencing studies
Published in
BMC Bioinformatics, September 2015
DOI 10.1186/s12859-015-0736-4
Pubmed ID
Authors

Kristopher A. Standish, Tristan M. Carland, Glenn K. Lockwood, Wayne Pfeiffer, Mahidhar Tatineni, C Chris Huang, Sarah Lamberth, Yauheniya Cherkas, Carrie Brodmerkel, Ed Jaeger, Lance Smith, Gunaretnam Rajagopal, Mark E. Curran, Nicholas J. Schork

Abstract

Next-generation sequencing (NGS) technologies have become much more efficient, allowing whole human genomes to be sequenced faster and cheaper than ever before. However, processing the raw sequence reads associated with NGS technologies requires care and sophistication in order to draw compelling inferences about phenotypic consequences of variation in human genomes. It has been shown that different approaches to variant calling from NGS data can lead to different conclusions. Ensuring appropriate accuracy and quality in variant calling can come at a computational cost. We describe our experience implementing and evaluating a group-based approach to calling variants on large numbers of whole human genomes. We explore the influence of many factors that may impact the accuracy and efficiency of group-based variant calling, including group size, the biogeographical backgrounds of the individuals who have been sequenced, and the computing environment used. We make efficient use of the Gordon supercomputer cluster at the San Diego Supercomputer Center by incorporating job-packing and parallelization considerations into our workflow while calling variants on 437 whole human genomes generated as part of large association study. We ultimately find that our workflow resulted in high-quality variant calls in a computationally efficient manner. We argue that studies like ours should motivate further investigations combining hardware-oriented advances in computing systems with algorithmic developments to tackle emerging 'big data' problems in biomedical research brought on by the expansion of NGS technologies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 3%
France 1 2%
Netherlands 1 2%
Ukraine 1 2%
United Kingdom 1 2%
Unknown 52 90%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 31%
Student > Ph. D. Student 13 22%
Student > Master 7 12%
Other 4 7%
Student > Bachelor 3 5%
Other 8 14%
Unknown 5 9%
Readers by discipline Count As %
Computer Science 14 24%
Agricultural and Biological Sciences 13 22%
Biochemistry, Genetics and Molecular Biology 12 21%
Engineering 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 5 9%
Unknown 9 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 October 2015.
All research outputs
#13,228,526
of 23,312,088 outputs
Outputs from BMC Bioinformatics
#3,862
of 7,384 outputs
Outputs of similar age
#123,387
of 275,559 outputs
Outputs of similar age from BMC Bioinformatics
#67
of 146 outputs
Altmetric has tracked 23,312,088 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,384 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,559 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 146 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.