↓ Skip to main content

htsint: a Python library for sequencing pipelines that combines data through gene set generation

Overview of attention for article published in BMC Bioinformatics, September 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

blogs
2 blogs
twitter
9 X users

Readers on

mendeley
29 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
htsint: a Python library for sequencing pipelines that combines data through gene set generation
Published in
BMC Bioinformatics, September 2015
DOI 10.1186/s12859-015-0729-3
Pubmed ID
Authors

Adam J. Richards, Anthony Herrel, Camille Bonneaud

Abstract

Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses. We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for 'enrichment' or conditional differences using one of a number of commonly available packages. The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint .

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 10%
Colombia 1 3%
Germany 1 3%
Unknown 24 83%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 28%
Student > Ph. D. Student 7 24%
Student > Master 3 10%
Student > Postgraduate 2 7%
Student > Bachelor 2 7%
Other 4 14%
Unknown 3 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 41%
Computer Science 5 17%
Biochemistry, Genetics and Molecular Biology 3 10%
Engineering 2 7%
Medicine and Dentistry 1 3%
Other 1 3%
Unknown 5 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 October 2015.
All research outputs
#2,000,051
of 23,577,761 outputs
Outputs from BMC Bioinformatics
#485
of 7,418 outputs
Outputs of similar age
#28,784
of 276,184 outputs
Outputs of similar age from BMC Bioinformatics
#11
of 144 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,418 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,184 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 144 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.